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Abstract. We introduce the concept of fruitful regions in a dynamic rout-
ing context: regions that have a high potential of generating loads to be
transported. The objective is to maximise the number of loads transported,
while keeping to capacity and time constraints. Loads arrive while the prob-
lem is being solved, which makes it a real-time routing problem. The solver
is a self-adaptive evolutionary algorithm that ensures feasible solutions at
all times. We investigate under what conditions the exploration of fruitful
regions improves the effectiveness of the evolutionary algorithm.

1 Introduction

Vehicle routing forms an interesting line of research, because of its high complexity
and intractable nature, as well as because of its importance to the transport indus-
try. It has been studied in many different forms, whereby introducing concepts as
uncertainty [1] and pickup-and-delivery scenarios [2]. In practice, dynamic routing
problems occur widely [3], in which matters are further complicated as one needs
to cope with a lack of knowledge while solving.

We concentrate our study on dynamic vehicle routing problems over an ex-
tended time period. This paper reports on the problem of collecting loads and
delivering them to a central depot, during which requested pickups appear dynam-
ically, i.e., while vehicles are on-route. We consider having knowledge about the
probability where loads appear, especially in the form of regions. This knowledge
could have been obtained from, for instance, data of previous routes on customer
demands. We address the problem whether this knowledge may improve upon the
quality of solutions.

In this paper we shall provide a mathematical model of this dynamic routing
problem, for which we will introduce an evolutionary algorithm in order to solve
it. Our main contribution is the discovery that exploration of fruitful regions is
beneficial to the effectiveness of the solver for various types of problem settings.

2 Relation to and embedding into previous research

Often in practice, a problem may develop over time, that is, some variables in the
problem may change or be set at a later stage such that a new evaluation of the
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problem is required. Basically, this inserts uncertainties and lack of information
into the problem. The literature distinguishes between two ways of analysing such
problems, stochastic routing and dynamic routing [4]. The latter is also referred to
as real-time routing or on-line routing [5]. In stochastic routing we are presented
with a routing problem that has a number of its variables stochastically determined.
This still requires a solution to the static problem, i.e., an a priori solution, but we
can use only an expected value of the optimisation function. Examples of stochastic
variables are uncertain supplies [6] and stochastic travel times [7]. The dynamic
routing problem requires that the solver keeps waiting for events to occur to which
it should act accordingly. Such events may be more customer requests, but they
can also be changed travel times or other incidents that endanger the success of
the current plan. A solver should thus make sure that it creates its solution to the
current status in such a way that it may be altered successfully to changes in the
future. Our interest lies in the second approach as these become more common in
practice, due to an increasing amount of computing and communication resources
and due to an increasing amount of flexibility demanded by customers [3, 8].

In the same book [9] where Psaraftis [10] laid out the differences between dy-
namic and static vehicle routing problems, Powell [11] first reviews the idea of
forecasting the uncertainties within dynamic routing. Powell’s work is targeted to-
wards solving assignment problems, where the objective is to assign available loads
to individual vehicles such that the whole fleet of vehicles is able to maintain a
steady flow of work. In [12], a model is presented that deals with long-haul trans-
port, which has led to a hybrid model that assigns jobs to trucks and forecasts
jobs in future time periods. Thus, Powell’s work is essentially about work flows,
and not about dynamic routing.

Our objective is to use the concept of demand forecasting and use this in
dynamic routing problems that occur real-time, i.e., the vehicles are on route when
the problem changes. This is different to the work of Laporte and Louveaux, which
is concerned with creating routes beforehand. It is also different to Powell’s work
on forecasting, as he uses it in combination with the assignment problem in the
application area of dispatching, a fact that is underlined in [13]. In the assignment
problem, the routing aspect, i.e., the optimisation problem where one minimises
route length or the number of vehicles, is fully ignored in favour of having the fleet
spread over the network such that the expected loads are covered.

In this paper, the application lies in transport that occurs in and between areas
with a dense distribution of customers, where routing is required to achieve cost
effective solutions. The problem is a dynamic in a sense that customer requests are
handled dynamically, and where the problem is solved in real-time. Furthermore,
the solver possibly makes use of the knowledge about high-potential, i.e., fruitful,
regions.

3 Definition of the problem

A routing problem consists of a set of nodes N , connected by a graph G = (N, E)
with edges E that are labelled with the cost to traverse them, a set of loads L and
a set of vehicles V . An optimisation function determines the goal of the routing



problem, which is further specified by a set of constraints that places restrictions
on the aforementioned resources. Here we consider loads that need to be picked up
from nodes and then delivered to a central depot.

A load l ∈ L is a quadruple 〈s, d, t, ∆〉, where s ∈ N is the source node, and
d ∈ N is the size of the load, which is fixed to one here. t ∈ T is the entry time,
i.e., the time when the load is announced to the solver, with T the time period of
the problem. Every load should be delivered to a central depot n0 ∈ N within ∆

time steps with l ∈ L, i.e., before t + ∆. Here we assume that ∆ is equal for each
load.

A vehicle v ∈ V is characterised by a capacity q and a start position sp ∈ N .
We assume that all vehicles have the same capacity. Each vehicle has a speed of 1
and starts at the depot (sp = n0). The dynamic status of a vehicle v, i.e., its route,
assigned loads and current position, is defined with two functions. Both functions
use the assumption that a vehicle always travels directly from node to node, i.e., it
is not possible to stop half way and choose another route. This enables us to talk
about the position of a vehicle in terms of nodes. We define the current position
of a vehicle v as p ∈ N where p is the node last visited by v. Then, we define the
current situation using v and p as,

current(v, p) = 〈r≤p, A≤p, Ap〉, (1)

where r≤p = (r0, . . . , rj) is an ordered list of nodes with ri ∈ N for 0 ≤ i ≤ j

and r0 = sp, denoting the route of the vehicle through the network up until and
including node rj where rj = p. A≤p is the set of loads that were assigned and
were collected and delivered to the central depot by v so far, and Ap is the set of
loads that were assigned and were collected by v so far, but not yet delivered.

future(v, p) = 〈r>p, A>p〉, (2)

where r>p = (rp+1, . . . , rk) is an ordered list of nodes with ri ∈ N , which denotes
the route planned for vehicle v from the next location rp+1 onwards. A>p is the
set of loads that are assigned to be collected by v in the future.

We define some additional functions that are helpful in our futher formulation
of the problem. The function arrival-time(v, p) returns the time vehicle v arrives
at node rp ∈ N as the pth node of its route. The function loads(v, p) returns the
set of all loads assigned to vehicle v; loads(v, p) = A≤p ∪ Ap ∪ A>p.

The constraints of the routing problem are given next.

∀v ∈ V, ∀p : future(v, p) = 〈(rp+1, . . . , rk), A>p〉 ∧ p + 1 = k ⇒ A>p = ∅ (3)

∀v1, v2 ∈ V, ∀p1, p2 : v1 6= v2 ⇒ loads(v1, p1) ∩ loads(v2, p2) = ∅ (4)

∀v ∈ V, ∀p : ∀〈s, d, t, ∆〉 ∈ Ap ∪ A<p : arrival-time(v, p) >= t (5)

∀l = 〈s, d, t, ∆〉 ∈ L : ∀v ∈ V : current(v, p) =

〈r≤p, A≤p, Ap〉 ∧ 〈s, d, t, ∆〉 ∈ Ap ∧ ∃p′ : rp′ = d ∧ p ≤ p′ ⇒

arrival-time(v, p′) ≤ t + ∆ (6)

∀〈v〉 ∈ V : ∀p : current(v, p) = 〈rp, A≤p, Ap〉 ⇒
∑

〈s,d,t,∆〉∈Ap

d ≤ q (7)



The constraint (3) restricts vehicles from carrying loads at the end of their
route. To enforce that a load is carried by at most one vehicle the constraint (4)
is used. The notion of time appears in three places; in the definition of a load,
where the entry time is set, in constraint (5), where we make sure loads are only
carried after their entry time, and in constraint (6), where we make sure loads are
delivered at their destination within a fixed time after entering the system. Finally,
constraint (7) is introduced to have vehicles carry only as much as their capacity
lets them.

Three differences with the classic static routing problem can be identified as in
this dynamic model:

1. vehicles may drive routes where they pass through nodes without performing
a loading or unloading action,

2. loads may become available while vehicles are already on route, and
3. it is let open that each load must be assigned to a vehicle.

The latter enables us to choose as the objective of the routing problem to carry as
many loads as possible, i.e., to maximise the number of loads successfully delivered
at the central depot: let pv be the last position of vehicle v at the end of time
period T , then max

∑
v∈V loads(v, pv). In the experiments we shall report as a

performance measure the success ratio, which is defined as the number of loads
successfully delivered at the depot divided by the total number of loads generated
during a run of the whole system.

4 Fruitful regions

In practice, customers are often clustered into regions as opposed to scattered
around equally over the total domain [14]. Often, the amount of service requested
in total from one region may differ much from another. This is due to all types of
reasons, such as the production capacities of customer in a region. Depending on
the distribution of the customers and the distribution of service requests, it might
be beneficial for a vehicle to visit nodes in the customer graph that have a high
probability for a service request in the near future.

depot

C3

C1

C2

v

Fig. 1. An example of an anticipating
route

The grouping of customers into clusters
is achieved either a posteriori, by observ-
ing the distribution of service requests in
historical data, or a priori, by modelling
them explicitly. In both cases we assume
that a partition C = {C1, C2, . . . , Cc} of
clusters exists in the layout of the prob-
lem, where each Ci ⊆ N . Next, we define
the vector f = (f1, f2, . . . , f|N |), where fj

is the probability that a load in the sim-
ulation originates from customer j ∈ N .
The following holds:

∑
j∈N fj = 1. We de-

fine the potential of a cluster Ci as the sum over the probabilities of its nodes:∑
j∈Ci

fj .



An example of three clusters and one central depot is presented in Figure 1.
The vehicle v that left the depot and then visited several nodes in C1, is now on
its route to a node in C2. If the potential for new loads in C3 is high enough, it
might want to perform an anticipated move, visiting nodes in C3 along the dotted
lines, as this could provide another load without much additional driving.

5 Evolutionary algorithm

In the context of dynamic optimisation, evolutionary computation has the advan-
tage of being able to cope with changes in the environment during its optimisation
[15]. By maintaining a diverse set of candidate solutions, the evolutionary algo-
rithm can adapt to the changes. Evolutionary algorithms can quickly converge to
a suboptimal or optimal solution. Together with the current speed of processors,
this makes it possible to keep providing solutions to a dynamic routing problem.

Bräysy and Gendreau [16] have reviewed many successful evolutionary algo-
rithms and other meta-heuristic approaches for the classic vehicle routing problem.
These were often tested using the well known Solomon benchmark [14]. All these
implementations make extensive use of heuristics and other hybrid solutions to
increase the efficiency and effectiveness of the final routing algorithm. Our objec-
tive is to verify whether or not the concept of fruitful regions can help increase
performance. We shall start with a straightforward representation of the problem
together with basic operators, then add the possibility to move vehicles to fruitful
regions. Precise details of the evolutionary algorithm are given next.

5.1 An evolutionary algorithm for dynamic routing

Representation Each individual represents a plan for all the vehicles in the system.
It is a list of routes, where each route corresponds to exactly one vehicle. A route
consists of potential assignments for that vehicle, which it will perform in that
order. Assignments are either pickup assignments or moves to a location. This
representation is then decoded into a valid solution, i.e., a solution where none of
the constraints are violated. Assignments that violate one or more time constraints
are ignored by the decoder. When a vehicle reaches its capacity or when adding
more assignments will violate a time constraint, the decoder forces a visit to the
depot. Afterwards, this vehicle may be deployed to service customers again. This
procedure is the same as used in [7]. The fitness of the individual will be based on
the decoded solution. Although the decoding process may have a large impact on
the fitness landscape, it is necessary as in a dynamic environment we must be able
to produce valid solutions on demand.

Initialisation At the start, i.e., at t = 0, every available load l ∈ {〈s, d, t, ∆〉 ∈
L|t = 0} is randomly assigned to a vehicle. When fruitful regions are considered, a
self-adaptative mechanism is used that lets an individual decide for itself how much
it values to explore such regions. This employs an alpha value initialised uniform
randomly between 0 and 1, which is further explained in the fitness function. The
population size is set to 30.



Fitness Function The basis for the fitness function is the number of loads that can
be transported successfully, i.e., that can be transported without violating the time
and capacity constraints. We call these feasible loads. The fitness of an individual
x is defined as,

fitness1(x) =
# feasible loads

# total loads available
.

Only available loads are considered, that is, loads that are not yet picked up.
The rationale here is that loads are removed from individuals of the evolutionary
algorithm once they are picked up. As individuals only concern with future routing
these loads play no role and should therefore not be included in the evaluation of an
individual. Note that for assessing the overall quality of the evolutionary algorithm,
we will use every load in the system over the whole period T .

We add the mechanism that allows the evolutionary algorithm to explore the
possibility of employing vehicles to nodes that have not yet requested service. The
fitness function, which has to be maximised, is extended with anticipated moves,
i.e., moves that have no direct loading action attached. These moves are performed
only when the constraints allow this. Thus, some moves may be cancelled during
decoding to make sure that the final plan satisfies the constraints placed upon
a vehicle because of previous assigned actions, such as, picking up a load. If we
would perform such a move, the planning would become infeasible and hence, such
a move is called an infeasible anticipated move. A candidate solution is penalised
for every infeasible anticipated move in order to restrict the number of anticipated
moves. The fitness of an candidate solution is decreased by the fraction of infeasible
anticipated moves out of all planned anticipated moves. The amount with which
this decreases the fitness function depends on an alpha value (α), which is encoded
into every candidate solution. Using this self-adaptive mechanism, each candidate
solution is able to determine by itself how much it values the effect of inserting
anticipated moves.

fitness2(x) = fitness1(x) − α
# infeasible anticipated moves

# total anticipated moves of x
.

To asses the effectiveness of the evolutionary algorithm, with or without antic-
ipated moves, we measure the ratio of the loads successfully delivered to the total
number of loads made available for transport, at the end of the run.

Selection A 2-tournament selection is used to select an individual for mutation. A
generational scheme is used, known in evolution strategies as (µ, µ), with elitism
of size one.

Variation operator Only mutation is considered. Two vehicles, possibly the same
one, are chosen uniform randomly. In both vehicles two nodes are selected uniform
randomly. If only one vehicle is chosen these nodes are chosen to be distinct. Then,
the nodes are swapped. This way, visits, both for loading or as an anticipated move,
can be exchanged between vehicles as well as within the route of one vehicle.

Furthermore, the individual’s alpha value, which influences the fitness function,
is changed according to the common update rule from evolution strategies.

Stop condition The algorithm is terminated once the time period T is expired, i.e.,
at the end of the simulation.



5.2 Dynamism

In practice, dealing with a dynamic problem means that we have limited time to
contemplate the solution as vehicles need to be kept going and changes may be
on their way. In reality we have the world and the solver running in parallel, and
then we need to decide how often the solver’s view of the world is updated. Here,
we choose a time period based on the number of times the evolutionary algorithm
evaluates one of its candidate solutions. These fitness evaluations take up most
of the time in an evolutionary algorithm. For each time unit of the simulation
the evolutionary algorithm may perform one generation. Thus the evolutionary
algorithm will perform population size × time steps (= 30|T |) fitness evaluations
in a simulation run.

The whole simulation operates by alternatively running the evolutionary algo-
rithm and the simulated routing problem. The routing simulator calculates when
the next event will occur, e.g., a vehicle will pickup or deliver a load, or, a load
is announced for pickup. Then, the evolutionary algorithm may run up until this
event occurs. This way we simulate an interrupt of the evolutionary algorithm
when it needs to adapt to changes in the real world. The best individual from the
last generation before the “interrupt” is used to update the assignments of the
vehicles in the routing simulation. Then, the routing problem is advanced up until
the next event. Afterwards, the individuals of the evolutionary algorithm are up-
dated by removing finished assignments and adding loads recently made available.
This process is repeated for time period T . Note that it is possible that multiple
events occur at the same time, which will be handled in one go.

6 Experiments

To simulate a dynamic environment with fruitful regions we introduce a particular
arrangements of the customers by clusters. First a set of points called the set of
cluster centres C is created by randomly selecting points (x, y) in the 2-dimensional
space such that these points are uniformly distributed in that space. Then for
each cluster centre (x, y) ∈ C a set of locations R(x,y) is created such that these
locations are scattered around the cluster centre by using a Gaussian random
distribution with an average distance of τ to choose the diversion from the centre.
This way we get clusters with a circular shape. The set of nodes N is defined as
N = {n|n ∈ R(x,y) ∧ (x, y) ∈ C}. The set of locations form the nodes of the graph
G = (N, E). This graph is a full graph and its edges E are labelled with the costs
to traverse them. For each (n1, n2) ∈ E, this cost is equal to the Euclidean distance
between n1 and n2.

A set of loads is randomly generated, which will represent the work that needs
to be routed in the time period T . Every load starts at a node and needs to be
carried to a central depot, which is located in the centre of the map. Each node
is assigned a number of loads, this number is taken from a Gaussian distribution
with as average the potential of the cluster and a deviation of loads within a cluster
parameter set in Table 1. Clusters are assigned a potential in the same way using
the average number of loads per cluster.



Table 1. Parameters of the problem instances, experiment parameters in bold

parameter value

maximum width and height of the map 200 × 200
number of locations |N | = 50
number of clusters |C| = 5
spread of locations in a cluster τ = 10
number of vehicles |V | = 10
capacity constraint q ∈ {1, 2, 3, 4, 5, 6}
delivery time constraint ∆ ∈ {20, 40, . . . , 380}
average number of loads per cluster 5
deviation of the number of loads over clusters 5
deviation of loads per node within a cluster 4
average time spread λ = 10 (σ = 50)

The entry times of loads is chosen by considering all loads one at a time. The
i-th load is generated at time i × λ + N(0, σ), where λ is the average time spread
σ is the deviation of the average time between entry times (see Table 1). This way
we spread the loads over time using a normal distribution.
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Fig. 2. Average ratio of successfully delivered loads with increasing delivery time for
both with and without using anticipated moves. Results for each setting of the time
delivery constraint are averaged over 40 problem instances with 10 independent runs of
the evolutionary algorithm and include 95% confidence intervals

To show the effect of performing anticipated moves to fruitful regions we fix
the capacity q of each vehicle to one and vary the time delivery constraint ∆.
By increasing the time available for performing a delivery, we are loosening this
constraint, which makes it possible that more loads are transported. We clearly
notice three stages, separated by the two vertical lines. Figure 2(a) shows the
result for both with and without performing anticipated moves. The first stage,
where delivery time is very restricted, and consequently only few loads can be
transported. There, anticipated moves will not influence the success ratio. Then, in
the next stage, the exploration of fruitful regions shows its potential for increasing
the success ratio. Last, when the time restriction is removed further, there is plenty
of time to deliver loads, thus the best result is achieved by sticking to routing
vehicles for pickup and deliveries only. For the last stage, a vehicle can take a long
time to fetch any load, as it will have more than enough time to return to the
depot.



With the capacity constraint set to five we get the result shown in Figure 2(b).
Most notably, the phase where the exploration of fruitful regions are beneficial
widens. In Figure 3(a), we show by how much anticipated moves improves the
effectiveness. The largest benefit is found at a time constraint setting of 100 and
120 for q = 1 and q = 5 respectively, where the success ratio is improved by 25%
and 30%. For tight time constraints no significant difference can be noted and
for loose time constraints the success ratio is at most 1.8% and 0.8% lower, for
the settings of 1 and 5 respectively. This shows that knowledge of the constraint
settings is important, but as long as the tightness of the time constraint is not too
restrictive, an exploration of fruitful regions is recommendable.
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Fig. 3. Performance ratios and transition points

To take into consideration the effect of both constraints, capacity and time, we
show how they relate for the lower and higher transition points. The lower point is
where we move from a stage where anticipated moves are not beneficial to a stage
where they are beneficial, while the higher point is where this move has the opposite
effect. The terms lower and higher correspond to the amount of time available for
delivery, where lower refers to small delivery times. For different settings of the
capacity constraint (1–6), we determine those transition points, which are shown
in Figure 3(b). The results should be interpreted as follows, when the settings of
the constraints fall above the line of the lower transition points and below the line
of the higher transition points using exploration of fruitful regions by performing
anticipated moves is beneficial for the effectiveness of load deliveries.

7 Conclusions

Dynamic constrained optimisation problems play an increasingly more import role
in many areas, not only because of faster computers and telecommunication, but
because of the increasing demand of customers for flexible and fast service as well.
Vehicle routing is a scientifically interesting problem as its static version is known



to be intractable. By moving into the realm of dynamic routing problems, with the
given constraint that we should be able to maintain viable solutions, we make this
problem even more challenging.

In this paper, we introduced a dynamic routing model that defines a load
collection problem, i.e., the pickup and return of loads to one depot. Especially,
we introduced a model for taking into account regions with high potentials for the
origin of new loads. Furthermore, we have provided an evolutionary algorithm that
is able to provide solutions in real-time. Using the evolutionary algorithm, and an
extention to let it perform anticipated moves, we have determined the transition
points where between the exploration of fruitful regions is of benefit. The potential
of using the concept of fruitful regions is evident from the significant increase in
the effectiveness for settings within these transition points.
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