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Abstract. We introduce a novel representation for the graph colour-
ing problem, called the Integer Merge Model, which aims to reduce the
time complexity of an algorithm. Moreover, our model provides useful
information for guiding heuristics as well as a compact description for
algorithms. To verify the potential of the model, we use it in dsatur, in
an evolutionary algorithm, and in the same evolutionary algorithm ex-
tended with heuristics. An empiricial investigation is performed to show
an increase in efficiency on two problem suites , a set of practical problem
instances and a set of hard problem instances from the phase transition.
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1 Introduction

The Graph Colouring Problem (gcp) plays an important role in graph theory. It
arises in a number of applications—for example in time tabeling and scheduling,
register allocation, and printed circuit board testing (see [1–3]). gcp deals with
the assigment of colours to the vertices of an undirected graph such that adjacent
vertices are not assigned the same colour. The primary objective is to minimize
the number of colours used. The minimum number of colours necessary to colour
the vertices of a graph is called the chromatic number. Finding it is an NP-hard
problem, but deciding whether a graph is k-colourable or not is NP-complete [4].
Thus one often relies on heuristics to compute a solution or an approximation.

Graph colouring algorithms make use of adjacency checking during colour-
ing, which plays a key role in the overall performance (see [5–7]). The number
of checks depends on the problem representation and the algorithm that uses
it. The Integer Merge Model (imm) introduced here directly addresses the is-
sues mentioned above. Generally, there are two main data structures used to
represent graphs: the adjacency matrix and the adjacency list. In [6] a novel
graph representation for the colouring problem called the Binary Merge Model
(bmm) is introduced. imm is a generalization of bmm, which is a useful and ef-
ficient representation of the gcp ([6, 7]). imm preserves bmm’s beneficial feature
of improving upon efficiency. Moreover, it provides useful information about the

J. Gottlieb and G.R. Raidl (Eds.): EvoCOP 2006, LNCS 3906, pp. 123–134, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



124 I. Juhos and J.I. van Hemert

graph structure during the colouring process, which enables one to define more
sophisticated colouring algorithms and heuristics with a compact description.
To demonstrate its potential, imm is embedded in the dsatur algorithm [8]—a
standard and effective heuristic gcp solver—and in a meta-heuristic environment
driven by an evolutionary meta-heuristic. On standard problem sets, we compare
the effectiveness and efficiency of these three algorithms, with and without the
use of imm.

2 Representing the Graph k-Colouring Problem

The problem class known as the graph k-colouring problem is defined as follows.
Given a graph G(V, E) which is a structure of nodes and edges, where V =
{v1, ..., vn} is a set of nodes and E = {(vi, vj)|vi ∈ V ∧ vj ∈ V ∧ i �= j} is a set of
edges, the edges define the relation between the nodes (V × V → E). The graph
k-colouring problem is to colour every node in V with one of k colours such that
no two nodes connected with an edge in E have the same colour. The smallest
such k is called the chromatic number, which will be denoted here by χ.

Graph colouring algorithms make use of adjacency checking during the colour-
ing process, which has a large influence on the performance. Generally, when
assigning a colour to a node, all adjacent or coloured nodes must be scanned
to check for equal colouring, so constraint checks need to be performed. The
number of constraint checks performed lies between two bounds, the current
number of coloured neighbours and |V | − 1. With the imm approach the num-
ber of checks is greater than zero and less than the number of colours used up
to this point. These bounds arise from the model-induced hyper-graph struc-
ture and they guarantee that the algorithms will perform better under the same
search.

2.1 Integer Merge Model

The Integer Merge Model (imm) implicitly uses hyper-nodes and hyper-edges
(see Figure 1). A hyper-node is a set of nodes that have the same colour. A
hyper-edge connects a hyper-node with other nodes, regardless of whether it is
normal or hyper. A hyper-node and a normal-node or hyper-node are connected
by a hyper-edge if and only if they are connected by at least two normal edges.
imm concentrates on the operations between hyper-nodes and normal nodes. We
try to merge the normal nodes with another node, and when the latter is a
hyper-node, a reduction in adjacency checks is possible. These checks can be
performed along hyper-edges instead of normal edges, whereby we can introduce
significant savings. This is because the initial set of normal edges is folded into
hyper-edges. The colouring data is stored in an Integer Merge Table (imt) (see
Figure 2). Every cell (i, j) in this table has non-negative integer values. The
columns refer to the nodes and the rows refer to the colours. A value in cell (i, j)
is greater than zero if and only if node j cannot be assigned a colour i because
of the edges in the original graph 〈V, E〉. The initial imt is the adjacency matrix
of the graph, hence a unique colour is assigned to each of the nodes. If the



Improving Graph Colouring Algorithms and Heuristics 125

graph is not a complete graph, then it might be possible to reduce the number
of necessary colours. This corresponds to the reduction of rows in the imt. To
reduce the rows we introduce an Integer Merge Operation, which attempts to
merge two rows. When this is possible, the number of colours is decreased by
one. When it is not, the number of colours remains the same. It is achievable
only when two nodes are not connected by a normal edge or a hyper-edge. An
example of both cases is found in Figures 1 and 2.

Definition 1. The Integer Merge Operation ∪ merges an initial row ri into an
arbitrary (initial or merged) row rj if and only if (j, i) = 0 (i.e., the hyper-node
xj is not connected to the node xi) in the imt. If rows ri and rj can be merged
then the result is the union of them.

Formally, let I be the set of initial rows of the imt and R be the set of all
possible |V | size integer-valued rows (vectors). Then an integer merge operation
is defined as

∪ : R × I → R

r′j := rj ∪ ri, r′j , rj ∈ R, ri ∈ I, or by components

r′j(l) := rj(l) + ri(l), l = 1, 2, . . . , |V |

A merge can be associated with an assignment of a colour to a node, because two
nodes are merged if they have the same colour. Hence, we need as many merge
operation as the number of the nodes in a valid colouring of the graph, apart
from the nodes which are coloured initially and then never merged, i.e., a colour
is used only for one node. If k number of rows left in the imt (i.e., the number
of colours used) then the number of integer merge operations was |V |−k, where
k ∈ {χ, . . . , |V |}.

With regard to the time complexity of a merge operation, we can say that
it uses as many integer additions as the size of the operands. In fact, we just
need to increment the value in the row rj , where the corresponding element
in the row ri is non-zero (i.e., has a value of one), that is d(xi) number of
operations. The number of all operations are at most

∑
i d(xi) = 2|E| for a valid

colouring. This occurs when a list based representation of the rows is applied
in an implementation. Using special hardware instructions available on modern
computers, merge operations can be reduced to one computer instruction. For
instance, a merge operation can be performed as one vdot operation on a vector
machine [9].

When solving a graph colouring while using the original graph representation
for checking violations, approximately |V |2 constraint checks are required to get
to a valid colouring and the imm supported scheme uses at most |V |·κ (κ ≈ χ the
number of colors in the result coloring) number of checks, because each node (|V |
items) has to be compared at most the number of existing hyper-nodes/colours,
which is not more than κ and χ if a solution is found. Hence, their quotient is
the improvement of an imm supported colouring, which is proportional to the
|V |/κ ratio.
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2.2 Permutation Integer Merge Model

The result of colouring a graph after two or more integer merge operations
depends on the order in which these operations were performed. Consider the
hexagon in Figure 1(a) and its corresponding imt in Figure 2. Now let the
sequence P1 = 1, 4, 2, 5, 3, 6 be the order in which the rows are considered for
the integer merge operations, i.e., for the colouring.

This sequence of merge operations results in a 4-colouring of the graph de-
picted in Figure 1(c). However, if we use the sequence P2 = 1, 4, 2, 6, 3, 5 then
the result will be only a 3-colouring, as shown in Figure 1(e) with the merges
1∪4, 2∪6 and 3∪4. The defined merge is greedy, i.e., it takes a row and tries to
find the first row from the top of the table that it can merge. The row remains
unaltered if there is no suitable row. After performing the sequence P of merge
operations, we call the resulting imt the merged imt.

Fig. 1. Examples of the result of two different merge orders P1 = 1, 4, 2, 5, 3, 6 and
P2 = 1, 4, 2, 6, 3, 5. The double-lined edges are hyper-edges and double-lined nodes are
hyper-nodes. The P1 order yields a 4-colouring (c), but with the P2 order we get a
3-colouring (e).

Finding a minimal colouring for a graph k-colouring problem using the imt

representation and integer merge operations comes down to finding the sequence
of merge operations that leads to that colouring. This can be represented as
a sequence of candidate reduction steps using the greedy approach described
above. The permutations of this representation form the Permutation Integer
Merge Model (pimm). It is easy to see that these operations and the colouring
are equivalent.

2.3 Extracting Useful Information: Co-structures

The imm can be incorporated into any colouring algorithm that relies on a con-
struction based form of search. The hyper-graph structure introduced can save
considerable computational effort as we have to make only one constraint check
along a hyper-edge instead of checking all the edges it contains. Besides this
favourable property, the model gives incremental insight into the graph structure
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(a) x1 x2 x3 x4 x5 x6

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(b) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(c) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 ∪ r5 1 0 1 1 0 1

r3 1 1 0 1 0 1
r6 1 0 1 0 1 0

(d) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 ∪ r6 2 0 2 0 1 0

r3 1 1 0 1 0 1
r5 0 0 0 1 0 1

(e) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 ∪ r6 2 0 2 0 1 0
r3 ∪ r5 2 1 0 2 0 2

Fig. 2. Integer Merge Tables corresponding to the graphs in Figure 1

with the progress of the merging steps. This information can be used in a bene-
ficial way, e.g., for defining colouring heuristics.

In this section, the co-structures are defined. These structures contain infor-
mation about some useful graph properties obtained during the merging process.
How this information is used precisely is explained in Sections 3 and 4, where
we describe the two algorithms in which we have embedded the Integer Merge
Model.

In practice the initial graphs are uncoloured, the colouring being performed
by colouring the nodes in steps. Here, we deal with the sub-graphs of the original
graphs defined by the colouring steps. The related merge tables contain partial
information about the original one. For example, let the original graph with its
initial imt be defined by Figure 2.3(a) on which the colouring will be performed.
Taking the x1, x4, x2, x6, x3, x5 order of the nodes into account for colouring G,
then P1 = 1, 4, 2, 6, 3, 5 ordered merges of the imt rows will be performed. After
the greedy colouring of the x1, x4, x2 nodes there is a related partial or sub-imt

along with the (sub-)hyper-graph. These are depicted in Figure 2.3(b). The 1st
and the 4th rows are merged together, but the 2nd cannot be merged with the
1 ∪ 4 merged row, thus the 2nd row remains unaltered in the related sub-imt.
The left, top, right and bottom bars are defined around the sub-imt to store the
four co-structures (see Figure 2.3(b)).

The left and top co-structures are associated with the original graph and contain
the sum of the rows and the columns of the current imt, respectively. The sum of
the cell values of a row is equal to the sum of the degree of the nodes associated
with the row (merged or initial), while the sum of the elements of the j-th
column provides the coloured degree of the node xj , i.e., the number of coloured
neighbours.

The right and the bottom co-structures supply information about the hyper-
graph represented by the sub-imt. They are calculated by counting the number
of non-zero values in the rows and columns in the order described. The bottom
bar value is the colour degree, i.e., the number of adjacent colours of a node.
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Fig. 3. The left side shows the partial colouring of the G graph according to the
x1, x4, x2 greedy order and the adjacency matrix of the graph. The right one shows the
partial or sub-imt related to this colouring with its co-structures and sub-imt induced
hyper-graph.

The right bar gives the hyper-degree value of the nodes, which is especially
interesting in case of hyper-nodes. The hyper-degree tells us how many different
normal nodes are connected to the hyper-node being examined. This counts a
node once even though it is connected to the hyper-node in question by more
than one normal edge folded in a hyper-edge.

By extending the imt we are able to describe efficient heuristics in a compact
manner. To demonstrate this we will formulate two effective heuristic using the
Integer Merge Model to get novel colouring algorithms. Two kinds of implemen-
tations of the two heuristic algorithms are considered during the experiments,
when imm is used and when it is not used.

3 The DSATUR Heuristic

This algorithm of Brélaz’s [8] uses a heuristic to dynamically change the ordering
of the nodes and it then applies the greedy method to colour them. It works as
follows. One node with the highest saturation degree (i.e., number of adjacent
colours) is selected from the uncoloured subgraph and is assigned the lowest
indexed colour that still yields a valid colouring (first-order heuristic). If there
exist several such nodes, the algorithm chooses a node with the highest degree
(second-order heuristic). The result can also be a set of nodes. If this is the case,
we choose the first node in a certain order (third-order ’heuristic’). The top and
bottom co-structures are used to define the dsatur heuristic (see Figure 4). Let
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us denote the top co-structure by τt (i.e., the number of coloured neighbours)
and the bottom co-structure by τb (i.e., saturation degree). In our terminology
the highest saturated node is the node which has the largest τb value. Here, τt

is used in the second order heuristic.

Procedure DSATURIMM

1. Find those uncoloured nodes which have the highest saturated value
S = {v|τb(v) = maxu(τb(u)), v, u ∈ V }

2. Choose those nodes from S that have the highest uncoloured-degree
N = arg maxv(d(v) − τt(v))

3. Choose the first row/node from the set N
4. Merge it with the first non-neighbor hyper-node
5. If there exists an uncoloured node then continue with Step 2

Fig. 4. The dsatur heuristic is defined by the imm top (τt) and bottom (τb) co-
structures. Here, d is the degree of a node.

A backtracking algorithm is used to discover a valid colouring [10]. It achieves
either an optimal solution or a near optimal solution when the maximum number
of constraint checks is reached. For comparison purposes, two algorithms were
implemented using this heuristic. The first one, dsaturIMM is based on the
imm structures, while the second one dsaturpure, uses the traditional colouring
scheme, where we only make use of the adjacency matrix.

4 Evolutionary Algorithm to Guide the Models

We have two goals with this meta-heuristic. The first is to find a successful
order of the nodes (see Section 2.2) and the second is to find a successful order
for assigning colours. This approach differs from dsatur, where a greedy color
assignment is used. For the first goal, we must search the permutation search
space of the model described in Section 2.2, which is of size n!. Here, we use
an evolutionary algorithm to search through the space of permutations. The
genotype consists of the permutations of the nodes, i.e., the rows of the imt.
The phenotype is a valid colouring of the graph after using a colour assignment
strategy on the permutation to select the order of the integer merge operations.
The colour assignement strategy is a generalization of the one introduced in [7].
We say that the c-th vector of the sub-imt r′(c) is the most suitable candidate
for merging with rpi if they share the most constraints. The dot product of two
vectors provides the number of shared constraints. Thus, by reverse sorting all
the sub-imt vectors on their dot product with rpi , we can reduce the number
of colours by merging rpi with the most suitable match. Here, the dot product
operates on integer vectors instead of binary ones, thus generalize that.

An intuitive way of measuring the quality of an individual p in the population
is by counting the number of rows remaining in the final bmt. This equals to
the number of colours k(p) used in the colouring of the graph, which needs to be
minimised. When we know the optimal colouring is χ then we may normalise this
fitness function to g(p) = k(p) − χ. This function gives a rather low diversity of
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fitnesses of the individuals in a population because it cannot distinguish between
two individuals that use an equal number of colours. This problem is called the
fitness granularity problem. We modify the fitness function introduced in [7] so
that to use Integer Merge Model structures instead of the appropriate binary
one. This fitness relies on the heuristic that one generally wants to avoid highly
constraint nodes and rows in order to have a higher chance of successful merges at
a later stage, commonly called a succeed-first strategy. It works as follows. After
the final merge the resulting imt defines the colour groups. There are k(p) − χ
over-coloured nodes, i.e., merged rows. Generally, we use the indices of the over-
coloured nodes to calculate the number of nodes that need to be minimised (see
g(p) above). But these nodes are not necessarily responsible for the over-coloured
graph. Therefore, we choose to count the hyper-nodes that violates the least
constraints in the final hyper-graph. To cope better with the fitness granularity
problem we should modify the g(p) according to the constraints of the over-
coloured nodes discussed previously. The final fitness function is then defined as
follows. Let ζ(p) denote the number of constraints, i.e., non-zero elements, in the
rows of the final imt that belong to the over-coloured nodes, i.e., the sum of the
smallest k(p) − χ values of the right co-structure. The fitness function becomes
f(p) = g(p)ζ(p). Here, the cardinality of the problem is known, and used as a
stopping criterium (f(p) = 0) to determine the efficiency of the algorithm. If
χ is unknown, we can use the worst approximation which is χ′ = 0. We must
modify the stop condition to, reaching a time limit or to fitness ≤ 0 due to
under-approximation (χ′ ≤ χ) or over-approximation (χ′ > χ). Alternatively,
the normalisation step can be left out, but this might seriously effect the quality
of the evolutionary algorithm in a negative way.

Procedure EAIMM

1. population = generate initial permutations randomly
2. while stop condition allows

– evaluate each p permutation {
– – merge pj − th uncoloured node into c − th hyper-node by c = maxj

〈
r′

j , rpi

〉

– – calculate f(p) = (k(p) − χ)ζ(p) }
– populationxover = xover(population, probxover)
– populationmut = mutate(populationxover, probmut))
– population = select2−tour(population ∪ populationxover ∪ populationmut)

3. end while

Fig. 5. The EAimm meta-heuristic uses directly the imm structure

We use a generational model with 2-tournament selection and replacement,
where we employ elitism of size one. This setting is used in all experiments.
The initial population is created with 100 random individuals. Two variation
operators are used to provide offsprings. First, the 2-point order-based crossover
(ox2) [11, in Section C3.3.3.1] is applied. Second, the other variation operator is
a simple swap mutation operator, which selects at random two different items in
the permutation and then swaps. The probability of using ox2 is set to 0.3 and
the probability for using the simple swap mutation is set to 0.8. These parameter
settings are taken from the experiments in [7].
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5 Experiments

The goal of these experiments are twofold. First, to show the improvement in
efficiency possible when adding the Integer Merge Model to an existing technique.
Second, to show further improvement possible in the evolutionary algorithm by
adding heuristics that are based on the additional bookkeeping in the form of
the co-structures.

5.1 Methods of Comparison

How well an algorithm works depends on its effectiveness and efficiency in solving
a problem instance. The first is measured by determining the ratio of runs where
the optimum is found, this ratio is called the success ratio; it is one if the opti-
mum, i.e., the chromatic number of the graph, is found in all runs. The second
is measured by counting the number of constraint checks an algorithm requires
to find the optimum. A constraint check is defined equally for each algorithm as
checking whether the colouring of two nodes is allowed or not. This measurement
is independent of the hardware used and is known to grow exponentially with
the problem size for the worst-case.

5.2 Definition of the Problem Suites

The first test suite consists of problem instances taken from “The Second dimacs

Challenge” [12] and Michael Trick’s graph colouring repository [12]. These graphs
originate from real world problems, with some additional artificial ones.

The second test suite is generated using the well known graph k-colouring
generator of Culberson [13]. It consists of 3-colourable graphs with 200 nodes.
The edge density of the graphs is varied in a region called the phase transition.
This is where hard to solve problem instances are generally found, which is shown
using the typical easy-hard-easy pattern. The graphs are all equipartite, which
means that in a solution each colour is used approximately as much as any other.
The suite consists of nineteen groups where each group has five instances, one
each instance we perform ten runs and calculate averages over these 50 runs. The
connectivity is changed from 0.010 to 0.100 by steps of 0.005 over the groups. To
characterize better the area of the phase transition, a simplification technique
is used introduced by Cheeseman et al in [14]. This three steps node reduction
removes the 0.010–0.020 groups, and simplify the graphs in the other groups to
get the core of the problems.

5.3 Results

In this section, the results of the three kinds of algorithms are presented with
and without using the Integer Merge Model, i.e., dsatur, ea which uses the
introduced fitness f and colour choosing heuristics and eanoheur which does
not apply these heuristics, it uses a greedy colouring with the fitness g. Each
algorithm was stopped when they reached an optimal solution or 150 000 000
number of constraint checks. DSatur with backtracking is an exact solver, it
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tries to explore the search space systematically by its heuristics. Thus, only one
run is enough to get its result. Because of the stochastic nature of eas, we use
ten independent runs.

We can summarise the results on test suite one found in Table 1 as follows,

– The performance of an algorithm improves significantly if it employs the imm

framework.
– The evolutionary algorithms perform better than dsatur, even after im-

proving the efficiency of the latter with imm.
– Adding heuristics to the evolutionary algorithms is useful to improve upon

the efficiency for harder problem instances.
– All algorithms find a solution for almost every problem within the maximum

number of constraint checks, except for the extremely hard queen8 8 and
r75 5g 8 problems.

Table 1. Number of constraint checks required for test suite one using dsatur and ea

with and without imm (latter is denoted by pure). Ten runs are averaged with different
random seeds for ea-s. Prefix-indices show the success ratios if it is not one.

graph |V | |E| χ dsaturimm dsaturpure eaimm ea
noheur
imm eapure ea

noheur
pure

fpsol2.i.2 451 8691 30 3059091 40527833 3414 4541 42022 56027
fpsol2.i.3 425 8688 30 2660498 32683629 3174 4988 39151 61015
homer 561 1629 13 2085103 75198957 2455 3672 57586 171641
inithx.i.1 864 18707 54 22305812 345876238 4328 5456 120348 142315
inithx.i.2 645 13979 31 6030391 95778467 2606 3680 84603 112000
inithx.i.3 621 13969 31 5762200 86482594 2480 3804 79458 124508
miles500 128 1170 20 147922 1046162 9066 46276 10366 75445
miles750 128 2113 31 204871 1121864 120051 693403 145459 5103811
miles1000 128 3216 42 244886 1249001 57934 559636 116054 1120068
miles1500 128 5198 73 329361 1500956 5436 14584 7032 19550
mulsol.i.5 186 3973 31 472872 2750261 1221 1370 7916 8905
myciel6 95 755 7 27807 624340 283 331 1499 2146
myciel7 191 2360 8 134956 4810974 901 1350 5602 11163
queen5 5 25 160 5 1665 12408 678 1777 906 2488
queen7 7 49 476 7 1176441 9106599 1092455 6675813 2793682 25332278
queen8 8 64 728 9 − − 0.687482316 0.4102517235 0.2125298157 −
r75 5g 8 75 1407 13 35693383 − 18668080 0.2122257875 0.929609833 0.2129031499

Figure 6 shows the performance measured by success ratio and by average
constraint checks performed of the algorithms on test suite two where 50 in-
dependent runs are used for every setting of the density. Both evolutionary
algorithms show a sharp dip in the success ratio in the phase transition (see
Figure 6), which is accompanied with a rise in the average number of constraint
checks. imm has significant influence on the performance, the improvement lies in
between 6 and 48 times on average (see Figure 6). DSatur provides good results
on the whole suite. Both the low target colour and the sparsity of the graphs
are favourable terms for the heuristics it employs. Furthermore, the order of the
graphs does not imply combinatorial difficulties for the backtracking algorithm.
Beside these facts, the suite is appropriate to get valuable information about the
behaviour of the algorithms. Even if the dsaturs perfom well on the problem
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sets, the ea, using the imm abilities, can outperform the pure version of dsatur

in the critical region. In the phase transition it is 50% better on average. In
practice, increasing the size of the graph leads to better performance of the eas
as opposed to the two exact dsatur algorithms. By employing ea heuristics,
i.e., the fitness function f and the colour choosing strategy, we clearly notice an
improvement in both efficiency and effectiveness over the simple greedy colour-
ing strategy with the simple fitness g. Furthermore, the confidence intervals for
this range are small and non-overlapping. These two approaches give a much
robust algorithm for solving graph k-colouring.
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Fig. 6. Success ratio (dsatur is always one) and average constraint checks to a solution
for the dsatur variants, the eas with and without heuristics (with 95% confidence
intervals)

6 Conclusions

In this paper, we introduced the Integer Merge Model for representing graph
colouring problems. It forms a good basis for developing efficient graph colouring
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algorithms because of its three beneficial properties, a significant reduction in
constraint checks, the availability of useful information for guiding heuristics,
and the compact description possible for algorithms.

We showed how the popular dsatur can be described in terms of the Integer
Merge Model and we empirically investigated how much it can benefit from the
reduction in constraint checks. Similarly, we showed how an evolutionary algo-
rithm can be made more effective by adding heuristics that rely on the Integer
Merge Model. Here we have shown a significant increase in both effectiveness
and effectivity.

Further studies may include incorporating the Integer Merge Model in other
algorithms, including more heuristics. Also, other constraint problems may be
considered.
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