
Heuristic Colour Assignment Strategies
for Merge Models in Graph Colouring

István Juhos1, Attila Tóth2, and Jano I. van Hemert3

1 Dept. of Computer Algorithms and Artificial Intelligence, Univ. of Szeged, Hungary
2 Department of Computer Science, Univ. of Szeged (jgytfk), Hungary
3 Centre for Emergent Computing, Napier University, Edinburgh, UK

Abstract. In this paper, we combine a powerful representation for graph
colouring problems with different heuristic strategies for colour assign-
ment. Our novel strategies employ heuristics that exploit information
about the partial colouring in an aim to improve performance. An evolu-
tionary algorithm is used to drive the search. We compare the different
strategies to each other on several very hard benchmarks and on gen-
erated problem instances, and show where the novel strategies improve
the efficiency.

1 Introduction

The problem class known as the graph k-colouring problem [1] is defined as
follows. Given a graph G = 〈V, E〉, where V = {v1, . . . , vn} is a set of nodes and
E = {(vi, vj)|vi ∈ V ∧ vj ∈ V ∧ i �= j} is a set of edges. The objective in the
graph k-colouring problem is to colour every node in V with one of k colours
such that no two nodes connected with an edge in E have the same colour. Such
a colouring is called a valid colouring. The smallest number of colours k used
to achieve a valid colouring of G is called the chromatic number of G, which is
denoted by χ.

Most algorithms searching for a solution of a graph k-colouring problem do
so by incrementally assigning a colour to a node. Consequently, at every node
visited a decision must be made which colour to assign. This choice may prove
of vital importance to achieving a valid colouring. Quite a number of strategies
for making this decision exist, and each one comes with its own rationale and
benefits [2–Chapter 5]. From recent theoretical developments [3] we know that
algorithms for finites sets of problems under permutation closure also cannot
escape the No Free Lunch Theorem [4], which makes it more important to link
properties of problems with algorithms [5].

A great deal of study is devoted to hybrid algorithms, as these have proven
to be successful approaches to solving difficult constrained optimisation prob-
lems. Popular methodologies are meta-heuristics [6] and, more recently, hyper-
heuristics [7] and hybrid meta-heuristics, where the idea is to use combine several
heuristics to get a more successful algorithm. This success is measured in both

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 132–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Heuristic Colour Assignment Strategies for Merge Models 133

effectiveness and efficiency, i.e., accuracy in finding solutions and time complex-
ity. Here, we examine the combination of a powerful representation for graph
colouring with five different heuristic strategies for colour assignment.

In the next section we explain how solutions of graph colouring problems
can be represented using merge models. Then, in Section 3 we explain different
heuristic strategies for colour assignment. These strategies are used in an evo-
lutionary algorithm explain in Section 4. The different heuristic strategies are
benchmarked in Section 5 together with other algorithms. Finally in Section 6
we draw some conclusions.

2 The Binary Merge Model Representations

Graph colouring algorithms make use of adjacency checking during the colour-
ing process, which has a large influence on the performance. Generally, when
assigning a colour to a node, all adjacent nodes must be scanned to check for
potential violations. Thus, a number of constraint checks, i.e., checks for equal
colours, need to be performed. The exact number of constraint checks performed
is bounded by the current number of coloured neighbours and by |V | − 1. Using
the Binary Merge Model approach, explained next, the number of constraint
checks lies between one and the number of colours used up to this point. These
bounds arise from the model-induced hyper-graph structure, which guarantees
that the algorithms usually performs better .

The Binary Merge Model (bmms) implicitly uses hyper-nodes and hyper-
edges (see Figure 1). A hyper-node is a set of nodes that all have the same
colour, i.e., they are folded into one node. A hyper-edge connects nodes of which
at least one node is a hyper-node. Such a hyper-edge essentially forms a collection
of regular edges, i.e., constraints. A hyper-edge only exists if and only if its
corresponding nodes are connected by at least two ”normal” edges. The bmm
concentrates on operations on hyper-nodes and normal nodes, by trying to merge
normal nodes with normal nodes and hyper-nodes. Within the context of search
effort, which in constraint satisfaction is measured by counting the number of
constraint checks, we can save effort if at least one of the nodes is a hyper-node.
Then, the number of adjacency checks, i.e, constraint checks, can be reduced
as these are performed along hyper-edges instead of normal edges, because one
constraint check on a hyper-edge saves at least one, but possible more, constraint
checks on the normal edges it incorporates. A more detailed explanation is given
in [8], where the model was introduced.

The current colouring of a graph 〈V, E〉 is stored in a Binary Merge Table
(bmt) (for an example, see Figure 2). Every cell (i, j) in the table is binary. The
columns refer to the nodes and the rows refer to the colours. A value in cell (i, j)
is zero if and only if node j ∈ V cannot be assigned colour i because of the edges
E in the original graph 〈V, E〉. The initial bmt is the adjacency matrix of the
graph, hence a different colour is assigned to each node.

If the graph is not a complete graph, then it might be possible to reduce the
number of necessary colours. This corresponds to reducing rows in the bmt. Rows

134 I. Juhos, A. Tóth, and J.I. van Hemert

can be reduced by repeatedly using a Binary Merge Operation, which attempt
to merge two rows. If a merge is possible, i.e., no violations are introduced, the
number of colours is decreased by one. Otherwise, the number of colours remains
the same. A merge is successful only when two nodes are not connected by a
normal edge or a hyper-edge. An example of both a successful and unsuccessful
merge is shown in Figures 1 and 2.

Definition 1. The Binary Merge Operations ∪ merges an initial row rj into an
arbitrary (initial or merged) row ri if and only if (j, i) = 0 (i.e. the hyper-node
xj is not connected to the node xi) in the bmt. If rows ri and rj can be merged
then the result is the union of them.

Formally, let I be the set of initial rows of the bmt and R be the set of all
possible |V | size rows, i.e. binary vectors. Then an merge operation is defined as

∪ : R × I → R

r′
j := rj ∪ ri, r′

j , rj ∈ R, ri ∈ I, or by components

r′
j(l) := rj(l) ∨ ri(l), l = 1, 2, . . . , |V |

With regard to the time complexity of the binary operation, it is proportional
to a binary or operation on a register of l bits. If l is the number of bits in one
such operation and, under assumption that the time complexity of that operation
is one, the merge of two rows of length n by l length parts takes 	n/l
 to complete.
If k is the number of rows left in the bmt, then the number of merge operations
is |V | − k, where k ∈ {χ, . . . , |V |}.

2.1 Permutation Merge Model

Finding a minimal colouring for a graph k-colouring problem using the binary
merge table representation requires finding the sequence of merge operations
that leads to that colouring. This can be represented as a sequence of candidate
reduction steps using the greedy approach described above. The permutations
of this representation form the Permutation Merge Model [8].

The result of colouring a graph after two or more merge operations depends
on the order in which these operations were performed. Consider the hexagon
in Figure 1(a) and its corresponding bmt in Figure 2. Now let the sequence
P1 = 1, 4, 2, 5, 3, 6 be the order in which the rows are considered for the merge
operations and consider the following merging procedure. Take the first two rows
in the sequence, then attempt to merge row 4 with row 1. As these can be merged
the result is 1 ∪ 4 (see Figure 1(b)). Now take row 2 and try to merge this with
the first row, i.e. (1 ∪ 4). This is unsuccessful, so row 2 remains unaltered. The
merge operations continue with the next rows 5 and 3, and finally, with 6. The
allowed merges are 1 ∪ 4 and 2 ∪ 5. This sequence of merge operations results
in the 4-colouring of the graph depicted in Figure 1(c). However, if we use the
sequence P2 = 1, 4, 2, 6, 3, 5 then the result will be only a 3-colouring, as shown
in Figure 1(e) with the merges 1 ∪ 4, 2 ∪ 6 and 3 ∪ 5. The defined merge is

Heuristic Colour Assignment Strategies for Merge Models 135

P{1,2} P1

P2

P2

x1

x6

x5

x4

x3

x2

x6

x3

x2 x5�

x2 x6�

x1 x4�

x1 x4�

x1 x4�

x1 x4�

x2 x6�

x3 x5�

(b)

(d) (e)

(c)

(a)

Fig. 1. Examples of the result of two different merge orders P1 = 1, 4, 2, 5, 3, 6 and
P2 = 1, 4, 2, 6, 3, 5. The double-lined edges are hyper-edges and double-lined nodes are
hyper-nodes. The P1 order yields a 4-colouring (c), but with the P2 order we get a
3-colouring (e).

greedy, i.e. it takes a row and tries to find the first row from the top of the table
that it can merge. The row remains unaltered if there is no suitable row. After
performing the sequence P of merge operations, we call the resulting bmt the
merged bmt.

(a) x1 x2 x3 x4 x5 x6

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(b) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 1 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(c) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 1 0 1 1
r2 ∪ r5 1 0 1 1 0 1

r3 1 1 0 1 0 1
r6 1 0 1 0 1 0

(d) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 1 0 1 1
r2 ∪ r6 1 0 1 0 1 0

r3 1 1 0 1 0 1
r5 0 0 0 1 0 1

(e) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 1 0 1 1
r2 ∪ r6 1 0 1 0 1 0
r3 ∪ r5 1 1 0 1 0 1

Fig. 2. Binary Merge Tables corresponding to the graphs in Figure 1.

In practice the graphs start out uncoloured, the colouring is then constructed
by colouring the nodes in steps. We deal with the sub-graphs of the original graph
defined by the colouring steps. The related binary merge tables contain partial

136 I. Juhos, A. Tóth, and J.I. van Hemert

information about the original one. Let the original graph with its initial bmt
be defined by Figure 3(a) on which the colouring will be performed. Taking the
x1, x4, x2, x6, x3, x5 order of the nodes into account for colouring G, then using
the ordering P1 = 1, 4, 2, 6, 3, 5, an attempt will be made to merge rows. After
the greedy colouring of the nodes x1, x4, x2 there is a related partial or sub-bmt
along with the (sub-)hyper-graph. These are depicted in Figure 3(b). The 1st
and the 4th row are merged together, but the 2nd cannot be merged with the
1 ∪ 4 merged row, thus the 2nd row remains unaltered in the related sub-bmt.

From here on, we concentrate on how to extract valuable information from the
sub-structures to get an efficient colour assignment strategy for the the nodes,
which takes into account the current state of the colouring. This as opposed to
the usually greedy manner, which is blind in this sense, i.e., it does not consider
the current environment.

(b)

(a)

x1

x6

x5

x4

x3

x2

x5

x6

x1 x4�

x2

x3

hyper-degree

Fig. 3. The left side shows the partial colouring of the G graph according to the x1, x4, x2

greedyorder and the adjacencymatrix of the graph.The right one shows thepartial or sub-
bmt related to this colouringwith its co-structures and sub-bmt inducedhyper-graph.

3 Heuristic Strategies for Colour Assignment

Finding the appropriate node order is important, which will be left to the evolu-
tionary algorithm described in Section 4. However, the choice of which colour to

Heuristic Colour Assignment Strategies for Merge Models 137

assign also has much influence on the success of the final algorithm. The greedy
strategy finds the first available colour for assigning it to the node currently
being coloured. It does so by trying to merge the corresponding rP (i) row of the
bmt to the previously merged rows following the natural order 1, 2, . . . , i − 1.

Instead of using a simple greedy procedure, we will employ a number of more
sophisticated ways for assigning colours. The way in which the merge model
reduces the number of colours leaves open the way in which the colours are
assigned to various groups of nodes. We take advantage of this by employing
different heuristic strategies for the assigning colours to nodes. Formally, let
xP (i) be the next node to be coloured, where i is the index of the node in the
permutation P . Next, we provide several strategies for assigning a colour to
xP (i) using the information provided by the current merge model. The first two
strategies use only information about the already coloured structure, i.e., about
the sub-bmt not dealing with the current node. The remaining, novel strategies,
use information about the current node and its context so far, and then try to
exploit this information by using it to avoid getting stuck later on.

3.1 Hyper-node Cardinality

This strategy attempts to merge row i with its preceding rows by favouring
hyper-nodes with high cardinality. A hyper-node’s cardinality is defined by the
number of normal nodes it encompasses. The strategy consists of first colouring
the hyper-node with the highest cardinality. In other words, choosing the colour
that colours the most nodes and gives valid colouring. Although this strategy
has a greedy component to it, its ability to use knowledge on-line, i.e., while
searching for a solution, may give it an edge over the simple greedy method.

3.2 Hyper-node Constrainedness

While the previous heuristic supposes that the hyper-node cardinality deter-
mines its constrainedness, this one expresses it in a direct way examining the
context of the considered hyper-node. With this heuristic, we favour the most
constrained hyper-nodes. The intuition is to avoid the possibility that the least
constrained nodes pick up too many irrelevant nodes. This method also works
for the bmt, where we count all the connecting hyper-edges, so calculating the
hyper-degree (see Figure 3). This information can easily be obtained by sum-
marising the rows, i.e., by making the first order norm ||rP (i)||1 of them in the
sub-bmt.

3.3 Suitable Matches

Up until now, we did not consider the characteristics of the structure of xP (i).
The previous strategy used only the constrainedness of hyper-nodes, and here we
shall use the xP (i) constraints as well to find a suitable match for merging rows.
We say that the m-th vector of the sub-bmt r′(m) is the most suitable candidate
for merging with rP (i) if they share the most constraints. The dot product of two
vectors provides the number of shared constraints. Thus, by reverse sorting all

138 I. Juhos, A. Tóth, and J.I. van Hemert

the sub-bmt vectors on their dot product with rP (i), we can reduce the number
of colours by merging rP (i) with the most suitable match.

These approach include implicitly the least constraining value heuristic [2–
Chapter 5], but provide additional one. Try to find that hyper-nodes (group of
the nodes) which has the most number of common neighbors. Thus, reducing
implicitly the structure of the graph in a way which is explicit described in [9].

3.4 Topological Similarity

The dot product, as described above, provides a measure for the similarity of
the vectors. If we normalise these vectors by their length, the result is a measure
for similarity in a topological sense. As the normalised dot products gives the
cosines of the angles of the vectors, higher cosines corresponds to vectors located
nearer. This strategy exploits this idea by collecting vectors that are spatially
near to each other. By performing merge operations on these collections we get
convex combinations of vectors. Thus, the result of a merge remains in the span
of the merged vectors. The idea behind this is to carefully combine similar groups
of colours, thereby building up a solid colouring of the graph that leaves enough
room for further merging of groups, i.e., rows in the bmt.

4 Evolutionary Algorithm to Guide the Models

We have two goals. The first is to find a successful order of the nodes and
the second is to find a successful order for assigning colour. While the order of
the node can be represented by a fix length permutation, the order for colour
assignment needs a variable length representation. We turn to the heuristics
described above to guide the colour assignment dynamically. For the first goal, we
must search the permutation search space of the model described in Section 2.1,
which is of size n!. Here, we use an evolutionary algorithm to search through the
space of permutations. The genotype consists of the permutations of the nodes,
i.e., rows of the bmt. The phenotype is a valid colouring of the graph after using
a colour assignment strategy on the permutation to select the order of the binary
merge operations.

An intuitive way of measuring the quality of an individual p in the population
is by counting the number of rows remaining in the final bmt. This equals to
the number of colours k(p) used in the colouring of the graph, which needs to
be minimised. When we know that the optimal colouring is χ then we may
normalise this fitness function to g(p) = k(p) − χ. This function gives a rather
low diversity of fitnesses of the individuals in a population because it cannot
distinguish between two individuals that use an equal number of colours. This
problem is called the fitness granularity problem. We address it by introducing a
new fitness, which relies on the heuristic that one generally wants to avoid highly
constraint nodes and rows in order to have a higher chance of successful merges
at a later stage. It works as follows. After the final merge the resulting bmt
defines the colour groups. There are k(p) − χ over-coloured nodes, i.e., merged

Heuristic Colour Assignment Strategies for Merge Models 139

rows. Generally, we use the indices of the over-coloured nodes to calculate the
number of nodes that need to be minimised. But these nodes are not necessarily
responsible for the over-coloured graph. Therefore, we choose to count the nodes
that are in the smallest group of nodes with the same colour. In the context of
the merge model, this corresponds to hyper-nodes with the smallest cardinality.
To cope better with the fitness granularity problem we should also deal with
the constraints causing high constrainedness. The final fitness function is then
defined as follows. Let ζ(p) denote the number of constraints, i.e., ones, in the
rows of the final bmt that belong to the k(p)−χ hyper-nodes having the smallest
cardinality. The fitness function becomes f(p) = (k(p) − χ)ζ(p).

Note that here the cardinality of the problem is known, and used as a stopping
criterium (f(p) = 0) to determine the efficiency of the algorithm. For the case
where we do not know the cardinality of the problem, this approach can be used
by leaving out the normalisation step.

5 Empirical Comparison

We use a generational model with 2-tournament selection and replacement,
where we employe elitism of size one. The stop condition is that either an in-
dividual p exists with f(p) = 0 or that the maximum number of generations of
6 000 generations is reached (twice as many as in a previous study due to the
harder problems here). The latter means that the run is unsuccessful, i.e., the
optimal colouring is not found. This setting is used in all experiments. The ini-
tial population is created with 100 random individual. Two variation operators
are used to provide offsprings. First, the 2-point order-based crossover (ox2)
[10–in Section C3.3.3.1] is applied. Second, the other variation operator is a sim-
ple swap mutation operator, which selects at random two different items in the
permutation and then swaps. We use simple operators to make sure that any
success gained, stems from the heuristic strategies for colour assignment. The
probability of using ox2 is set to 0.4 and the probability for using the simple
swap mutation is set to 0.6. These values are take from a previous study [8].

5.1 Means of Comparisons

The performance of an algorithm is expressed in its effectiveness and its efficiency
in solving a problem instance. The first is measured using the success ratio, which
is the amount of runs where an algorithm has found the optimum divided by
the total number of runs. The second is measured by keeping track of how many
constraint checks are being performed on average, for a successful run. This
measure is independent of hardware and programming language as it counts the
number of times an algorithm requests information about the problem instance,
e.g., it checks if an edge exists between two nodes in the graph. This check, or
rather the number of times it is performed, forms the largest amount of time
spend by any constraint solver. A constraint check is defined for each algorithm
as checking whether the colouring of two nodes is allowed (satisfied) or not

140 I. Juhos, A. Tóth, and J.I. van Hemert

allowed (violated). An evolutionary algorithm is of stochastic nature. Therefore,
we always perform ten independent runs with different random seeds for each
problem instance. Results are averaged over these runs and, where appropriate,
over multiple instances with equal characteristics.

5.2 Benchmarks

We compare the five different strategies on a number of benchmark problems
from the “The Second dimacs Challenge” [11], which is a standard competi-
tion repository. For demonstration purposes we choose the extremely difficult
Leighton graphs [12]. In a previous study [13], these graphs took 10–20 hours
to be solved by specialised evolutionary solvers, due to the structure induced
during their creation. Also, the failure of the well-known heuristic dsatur of
Brélaz [14] confirms the difficulty of these problem. They are random graphs
on n = 450 nodes with an edge density of 0.25. A graph is constructed by first
generating cliques of varying sizes in such a way that the pre-specified value of
χ is not violated. Here we use χ = 15. They are identified by le450-15x, where
x is one of a, b, c, or d, to differentiate the individual instances.

 52000

 54000

 56000

 58000

 60000

 62000

 64000

 66000

 68000

 70000

 72000

 0 5 10 15 20 25 30 35 40 45 50A
ve

ra
ge

 d
en

si
ty

 o
f e

dg
es

 in
 th

e
gr

ap
hs

Generations

le450-15c

Simple greedy
Hyper-node cardinality

Hyper-node constrainedness
Suitable matches

Topological similarity

 52000

 54000

 56000

 58000

 60000

 62000

 64000

 66000

 68000

 70000

 72000

 0 5 10 15 20 25 30 35 40 45 50A
ve

ra
ge

 d
en

si
ty

 o
f e

dg
es

 in
 th

e
gr

ap
hs

Generations

le450-15d

Simple greedy
Hyper-node cardinality

Hyper-node constrainedness
Suitable matches

Topological similarity

Fig. 4. Convergence graphs of the fitness for all five strategies on two hard problems

In Figure 4, the fitness of the best individual in the population is presented for
each generation. These results are averaged over ten runs. This provides insight
into the convergence when employing the different heuristic strategies. Not much
difference exists between the simple greedy strategy and both the hyper-node
cardinality and hyper-node constrainedness. However, we notice a significant
faster convergence for both the suitable matches and the topological similarity.
For the graph le450-15c, the convergence of the topological similarity is slightly
faster than that of the suitable matches. Observing the starting phase for the
le450-15d, the topological similarity shows large improvements, however after
the good starting the suitable matches catches it up.

Heuristic Colour Assignment Strategies for Merge Models 141

5.3 In the Phase Transition

Using the well known graph k-colouring generator of Culberson [15], we generate
a test suite of 3-colourable graphs with 200 nodes. The edge density of the graphs
is varied in a region called the phase transition. This is where hard to solve
problem instances are generally found, which is shown using the typical easy-
hard-easy pattern. The graphs are all equipartite, which means that in a solution
each colour is used approximately as much as any other. The suite consists of
nine groups where each group has five instances, one each instance we perform
ten runs and calculate averages over these 50 runs. The connectivity is changed
from 0.020 to 0.060 by steps of 0.005 over the groups.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

S
uc

ce
ss

 r
at

io

Average density of edges in the graphs

Simple greedy
Hyper-node cardinality

Hyper-node constrainedness

-5e+07

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

A
ve

ra
ge

 n
um

be
r

of
 c

on
st

ra
in

t c
he

ck
s

Average density of edges in the graphs

Simple greedy
Hyper-node cardinality

Hyper-node constrainedness

Fig. 5. Success ratio and average constraint checks to a solution for the simple greedy
strategy, the hyper-node cardinality strategy, and the hyper-node constrainedness strat-
egy (with 95% confidence intervals; for 0.035, the success ratio is too low thus we include
all runs)

Figure 5 shows the performance measured by success ratio and by average
constraint checks performed for the simple greedy strategy and the two strategies
that restrict their on-line heuristics to the current node under consideration for
colouring. No significant improvement is made over the simple greedy method.

The two novel strategies that employ knowledge over the colouring of the
graph made so far are shown in Figure 6 together with the simple greedy strategy.
Here we clearly notice an improvement in both efficiency and effectiveness over
the simple greedy strategy. Especially, the search effort needed for denser graphs
is much lower. Furthermore, the confidence intervals for this range are small
and non-overlapping. These two approaches give a much robuster algorithm for
solving graph k-colouring.

6 Conclusions

We have combined a powerful representation for the graph k-colouring problem,
called the permutation merge model, with several heuristic strategies for colour

142 I. Juhos, A. Tóth, and J.I. van Hemert

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

S
uc

ce
ss

 r
at

io

Average density of edges in the graphs

Simple greedy
Suitable matches

Topological similarity

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

A
ve

ra
ge

 n
um

be
r

of
 c

on
st

ra
in

t c
he

ck
s

Average density of edges in the graphs

Simple greedy
Suitable matches

Topological similarity

Fig. 6. Success ratio and average constraint checks for the simple greedy strategy,
the suitable matches, and the topological similarity (with 95% confidence intervals for
0.035, the success ratio is too low thus we include all runs)

assignment. Four novel strategies use information about the current state of the
colouring of the graph to infer where problems can be expected in a future stage
of the colouring process. The aim of exploiting this knowledge is to improve
performance by increasing the efficiency and effectiveness of the evolutionary
algorithm that uses the permutations merge model.

By comparing the different strategies on several hard to solve problems, we
showed how employing on-line heuristics improves the convergence speed of the
evolutionary algorithm. Furthermore, the two novel strategies, by exploiting the
suitability of matches and the topological similarity, showed more potential then
the two strategies that restrict to using knowledge about the current node only.

In order to get a strong comparison, we compared all the strategies on a suite
of generated problem instances that encompasses the phase transition. This way
we ensure a comparison on very hard to solve problems. This confirmed the
results on the benchmarks, as the two novel strategies are more effective, i.e.,
had a higher success ratio, on the right side of the phase transition. Also, they
were far more efficient, and more consistent in their efficiency.

Acknowledgements

This work was supported by the Hungarian National Information Infrastruc-
ture Development Program through High Performance Supercomputing as the
project cspai/1066/2003-2004. The third author is supported by a talent-
Stipendium awarded by the Netherlands Organization for Scientific Research
(nwo).

References

1. Jensen, T., Toft, B.: Graph Coloring Problems. Wiley-Interscience Series in Dis-
crete Mathematics and Optimization. John Wiley & Sons, Inc (1995)

Heuristic Colour Assignment Strategies for Merge Models 143

2. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. second edn.
Prentice Hall Series in Artificial Intelligence. Englewood Cliffs, New Jersey (1995)

3. Schumacher, C., Vose, M., Whitley, L.: The no free lunch and problem description
length. In Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M., Gen,
M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E., eds.: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2001), Morgan
Kaufmann (2001) 565–570

4. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1 (1997) 67–82

5. Culberson, J.: On the futility of blind search: An algorithmic view of ”No Free
Lunch”. Evolutionary Computation 69 (1998) 109–128

6. Glover, F., Kochenberger, W., Gary, A.: Handbook of Metaheuristics. Volume 57
of International Series in Operations Research and Management Science. Kluwer
(2003)

7. Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyper-heuristic for timetabling
and rostering. Journal of Heuristics 9 (2003) 451–470

8. Juhos, I., Tóth, A., van Hemert, J.: Binary merge model representation of the graph
colouring problem. In Gottlieb, J., Raidl, G., eds.: Evolutionary Computation in
Combinatorial Optimization. (2004) 124–134

9. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the Really Hard Problems
Are. In: Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, IJCAI-91, Sidney, Australia. (1991) 331–337

10. Bäck, T., Fogel, D., Michalewicz, Z., eds.: Handbook of Evolutionary Computation.
Institute of Physics Publishing Ltd, Bristol and Oxford University Press (1997)

11. Johnson, D., Trick, M.: Cliques, Coloring, and Satisfiability. American Mathemat-
ical Society, dimacs (1996)

12. Leighton, F.T.: A graph colouring algorithm for large scheduling problems. J. Res.
National Bureau Standards 84 (1979) 489–503

13. Dimitris Fotakis, Spyros Likothanassis, S.S.: An evolutionary annealing approach
to graph coloring. In: Proceedings of Applications of Evolutionary Computing,
EvoWorkshops 2001. (2001) 120–129

14. Brélaz, D.: New methods to color the vertices of a graph. Communications of the
acm 22 (1979) 251–256

15. Culberson, J.: Iterated greedy graph coloring and the difficulty landscape. Tech-
nical Report tr 92-07, University of Alberta, Dept. of Computing Science (1992)

	Introduction
	The Binary Merge Model Representations
	Permutation Merge Model

	Heuristic Strategies for Colour Assignment
	Hyper-node Cardinality
	Hyper-node Constrainedness
	Suitable Matches
	Topological Similarity

	Evolutionary Algorithm to Guide the Models
	Empirical Comparison
	Means of Comparisons
	Benchmarks
	In the Phase Transition

	Conclusions

