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Abstract. This paper proposes a computational model for solving opti-
misation problems that mimics the principle of evolutionary transitions
in individual complexity. More specifically it incorporates mechanisms
for the emergence of increasingly complex individuals from the inter-
action of more simple ones. The biological principles for transition are
outlined and mapped onto an evolutionary computation context. The
class of binary constraint satisfaction problems is used to illustrate the
transition mechanism.

1 Introduction

From biological literature one can learn that life is organised in a hierarchical
fashion and that transitions in complexity have occurred linking the different
levels of this hierarchy. Typical examples in this context are the transitions from
genes to simple cells, from single cells to multi-cellular organisms or from single
organisms to social systems [1,2]. It has been argued that these transitions in
the complexity of the evolving individuals share two common themes: (1) the
emergence of cooperation among individuals at a lower level in the hierarchy
into the functioning of a new higher level unit and (2) the regulation of conflict
among these lower level units.

In this article, the metaphor defined by transitions in biological complexity
is used to construct an artificial evolutionary system which can be used in the
context of optimisation and learning. The central problem we investigate is how
a system can be designed that captures the two themes of cooperation and
mediation proposed by Michod [2] into a suitable algorithm. Hence, this article
will discuss a mapping between the abstract scheme that captures the common
structure of evolutionary transitions and an artificial evolutionary model that
can serve as an alternative for the simple genetic algorithm (GA).

We focus here on system that provides transitions in the context of the solu-
tion complexity for the class of binary constraint satisfaction problems
(BINCSP). This example from optimisation was chosen for four reasons: (1)
we were interested in a problem where solutions can be modelled by the aggre-
gation of lower level (partial) solutions, (2) cooperative interactions between the
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partial solutions can be defined in a natural way, (3) when the interactions ben-
efit the partners, the new unit of selection that emerges at the higher-level can
still be interpreted using semantics defined by the problem under observation,
and (4) previous studies enable us to create problems with a controlled level of
difficulty [3]. Consequently from the first three reasons, the emergent unit still
has some meaningful functionality in the context of the problem.

The difference with the GA approach to evolution is that solutions are vari-
able length representations which increase in complexity, individuals use only
replication and mutation and are placed in an interactive framework which sup-
ports collaborative behaviour. Consequently, the proposed model is related to
messy Genetic Algorithms (mGA) [4] and the Compositional Evolution model
[5,6]. For details on the technical differences, we refer to [7]. Conceptually, the
difference is in the metaphor used to construct the model. Here, as mentioned
earlier, the transition perspective focuses on the one defined in [2].

In the next section, the class of optimisation problems for which the transi-
tion model will be defined is explained. Given this problem context, a mapping is
examined between the transition cycle and the proposed evolutionary optimisa-
tion system. Afterwards an illustrative experiment is performed to demonstrate
the increase of complexity and its effect on the fitness.

2 Optimisation Context for Transition Study

Constraint Satisfaction Problems (CSP) [8] form a NP-complete problem class
where, on the one hand, one has a set of variables X associated with possible
domain values D and, on the other hand, a set of constraints C defined on
this set of variables, which prohibits combinations of assignments to occur. The
problem consists in finding an assignment to the whole set of variables from the
associated domain values so that all constraints are satisfied. If this proves to be
impossible then the corresponding problem is said to be unsolvable.

A variant of this problem is BINCSP, where each constraint is defined on
at most two variables. This forms no restriction on the general form of CSP as
every CSP can be rewritten into a BINCSP and vice versa [9].

Let us take as an illustration the following BINCSP: consider a set of six
variables: X = {x1, x2, x3, x4, x5, x6} all taking values in D = {1, 2, 3}. We
consider the following set of constraints:

C = {(x1 �= x2), (x2 �= x3), (x3 �= x1),
(x4 �= x5), (x5 �= x6), (x6 �= x4),
(x1 = x4), (x2 = x5), (x3 = x6)}

(1)

This setup of constraints consists of nine binary constraints. Each binary con-
straint defines a relation between two variables of X . Also, for each pair of
variables, only one binary constraint may be defined.

The problem involves finding the correct assignment for the variables so that
all these constraints are satisfied. We denote the assignment of one variable
xi ∈ X with value d ∈ D by 〈d, i〉 where i is the index of the variable we consider.
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Using this notation, we represent the simultaneous assignment of variables x1,
x2 and x4 with respective values v1, v2 and v4 as

(〈v1, 1〉, 〈v2, 2〉, 〈v4, 4〉) (2)

A solution for a BINCSP problem consists in an assignment of variables from
X to values of D. We use randomly generated problem instances of BINCSP. The
RandomCSP package [10] is used to generate the suite of test problem instances
[11]. To scale the difficulty of the problem instances, these CSP are generated
according to two parameters. For more details see [11,7]. An important property
that was observed is that for certain problem instances there is more structure
in the search space than others. Whenever structure is present the algorithm
described later can exploit it.

3 Evolutionary Transition in BINCSP Solutions

As mentioned in the introduction, all transitions in nature share two common
themes: cooperation and conflict mediation among the lower-level individuals.
These themes are captured in the transition cycle visualised in Figure 1. One
can observe four phases in this cycle and these phases need to be captured by
the proposed algorithm.

A system that uses the metaphor visualised in the figure, should be able to
apply it iteratively. In other words, repeated phases of cooperation and mediation
between ever increasing levels will produce more and more complex organisms
which try to survive in their selective environment. In the following sections
a mapping will be defined of an optimisation process onto the cycle. For the
rest of the discussion, it is assumed that an evolutionary system is present that
simulates the process of differential survival and reproduction of the partial and
complete solutions for a particular BINCSP problem.

Fig. 1. Transition Cycle [2]; Every transition starts at a certain level of complexity.
At this level cooperation needs to emerge since it exchanges fitness at the lower level
with fitness at the higher level. Yet conflict remains. Defection among the lower-level
units can lead to the destruction of the cooperative group. These conflicts need to
be mediated and this will lead to a new level of individuality with its own heritable
variations that evolve and diversify.
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3.1 Representation of Lower-Level Units

At the lowest (initial) level, the system consists of a population P containing
N individuals where each individual i is represented by a set of variables Si ⊆
X for all i ∈ {1, 2, ..., N}. Here it is assumed that, at the lowest level, the size
of this set S is 2. Hence, the initial population contains only partial solutions
which can solve one of the binary constraints in the set C (see Equation (1)).
An individual which contains a value for all variables in X is referred to as a
complete or fully qualifying solution. Hence, complexity in the current system
refers to the number of variables present in an individual i.e. individuals of
maximum complexity are complete solutions.

A partial solution s that only defines values for x1 and x2 is for example:

(〈1, 1〉, 〈3, 2〉). (3)

(3) is called the genotype of the solution. The selective system will operate on
the quality of the genotype in solving the constraints listed in the set C.

3.2 Cooperation Between Lower-Level Units

Interactions between the partial individuals is done between pairs of individuals
that are randomly selected from the population P . The experiments discussed
here will not consider larger groups. This assumption is removed in some ongoing
experiments, yet they will not be reported here.

Interaction between partial solutions is defined in the following manner.
Let solution s defined by (3) interact with a symbiotic partner sp defined by
(〈3, 1〉, 〈2, 3〉). This interacting partner is referred to as the symbiotic partner of
(3) and we denote the relation by:

(〈1, 1〉, 〈3, 2〉) ↔ (〈3, 1〉, 〈2, 3〉). (4)

We simulate interaction between 2 partial solutions by sharing the information
contained in their genotypes. The outcome of the information sharing between
a solution and its symbiotic partner is called the phenotype of the solution. For
example, the phenotype of (4) is simply obtained by combining all information
present in both genotypes:

〈
(

1
3

)
, 1〉, 〈3, 2〉, 〈2, 3〉 (5)

Important to notice here is that the genetic information of both individuals is
not changed. The heritable capacity of both s and sp remains at the level of the
simple units.

The situations one can have when combining s and sp correspond to the
different general forms of symbiosis: parasitism (P) , mutualism (M) , commen-
salism (C) and amensalism (A). In the case of parasitism, as shown in Table 1,
the association is disadvantageous for one of the partners and beneficial to the
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other one. The outcome of the interaction between s and sp is parasitic if s solves
one of the constraints of C correctly (A(s) =high) and sp does not (A(sp) =low).
The information sharing will in that case benefit sp since it increases its adap-
tiveness and it decreases the adaptiveness of s. The relation between s and sp is
mutualistic if both partners gain something from the relation (A(s, sp) =high).
In the table, both individuals have low adaptiveness but when the two variables
x2 and x3 are combined, i.e. (〈3, 2〉, 〈2, 3〉), their adaptiveness increases. Com-
mensalism occurs when the adaptiveness of one of the partners does not change
due to the information sharing. In the table, an example is shown where both
individuals have a value for variable x1 i.e. the values 1 and 3. Now if the as-
signment x1 = 1 resolves one of the constraints and it is assumed that the value
is selected by both partners then only sp benefits from the relation and things
do not change for s. A similar reasoning can be followed for amensalism. In that
case the association is disadvantageous for one of the partners. Yet then instead
of choosing the best value for x1, the worst one is selected.

3.3 Conflict Mediation

Although cooperative behaviour produces better results in the long term, short
term considerations will lead to defecting behaviour. An important choice made
by individuals in a transition model is whether they will share the information or
not. In order to have transitions in complexity, mechanisms should be put into
place which encourage the evolution of information sharing behaviour. In the
current model, it assumed that individuals want to collaborate. In other words
they are all cooperative. In further experiments this assumption is relaxed. This
simplification was made to examine whether cooperative partially defined units
can actually lead to fully qualifying solutions for BINCSP problems. In general,
principles from multilevel selection are incorporated to model the evolution of
cooperative interactions between pairs (or between members of more complex
groups) [12]. For now, we focus on another conflict issue.

Next to the choice of collaborating or not, other conflicts can occur. As
shown in (5) partners can have different values for the same variables. These

Table 1. Some examples of the different forms of symbiosis and their relation to the
BINCSP problem. A(s) and A(sp) evaluate the adaptiveness of both individuals in their
personal relation to the problem.A(s, sp) refers the effects of the information sharing
on the adaptiveness of both individuals.

s A(s) sp A(sp) symbiosis A(s, sp)
P (〈1, 1〉, 〈3, 2〉) high (〈3, 3〉, 〈2, 4〉) low (〈1, 1〉, 〈3, 2〉, 〈3, 3〉, 〈2, 4〉) (low,high)
M (〈1, 1〉, 〈3, 2〉) low (〈3, 1〉, 〈2, 3〉) low (〈1, 1〉, 〈3, 2〉, 〈3, 1〉, 〈2, 3〉) (high,high)

C (〈1, 1〉, 〈3, 2〉) high (〈3, 1〉, 〈2, 3〉) low 〈
(

1
3

)
, 1〉, 〈3, 2〉, 〈2, 3〉 (high,high)

A (〈1, 1〉, 〈3, 2〉) high (〈3, 1〉, 〈2, 3〉) low 〈
(

1
3

)
, 1〉, 〈3, 2〉, 〈2, 3〉 (low,low)



Evolutionary Transitions as a Metaphor for Evolutionary Optimisation 347

problems with conflicting values are resolved by selecting randomly one of the
possible choices. Hence, the symbiotic behaviour can correspond to any of those
described in Table 1.

In our example, a conflict needs to be resolved for variable x1. We can choose
between the values 1 and 3. A possible conflict resolution in this case would be:

〈1, 1〉, 〈3, 2〉, 〈2, 3〉 (6)

(6) is called the induced phenotype of the partial solution (3). This phenotype is
used for evaluation and the result of the evaluation is assigned to the genotype s
i.e. (3). We denote the phenotype of a solution s interacting with sp by: φ(s, sp).

The phenotype assigned to the symbiotic partner sp is obtained in the same
way. Yet, the policy about conflicting values may yield another representation
than the one we obtained for the initial partial solution s. This asymmetry be-
tween the phenotype of a solution and the phenotype of its symbiotic partner
increases the exploration possibilities of the evolutionary process. Note that the
conflict mediation strategy adopted for this particular test case avoids the sys-
tem to build greater genotype than the maximum size expected for a genotype.
Hence, the problem related to ever growing genotypes which is a classical issue
in variable length representation does not occur here.

3.4 Intermezzo: Evaluation of Genotypes

Here two types of functions are considered. One function to determine the success
of the solution in terms of the complete constraint set (f(s)) and another function
to determine how good it scores relative to the constraints it covers (fcov(s)).

Assume that ck(p) is the outcome of evaluating phenotype p with constraints
k, we say that p covers ck if p contains assignments for all variables contained
in ck, furthermore, p satisfies ck if the assignment values in p do not violate the
constraints defined by ck.

ck(p) =
{

1 if p covers ck ∧ p satisfies ck

0 otherwise (7)

Given this, the classical evaluation of the solution described by (3) and denoted
by s working with a symbiotic partner sp is given by:

f(s) =
1

|C|
∑
k∈C

ck(φ(s, sp)) (8)

where C is the constraints set, |C| the size of the constraints set and φ(s, sp) the
induced phenotype of s when sharing information with its symbiotic partner.

It does however not give any indication of the quality of the partially defined
assignments relatively to the constraints it covers. To see whether an association
works fine or not, a restricted fitness measure is define that only considers the
constraints covered by the phenotype of the solution.
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Assume that cov(s, C) is the set of constraints covered by s, the covering
fitness measure is given by:

fcov(s) =
1

|cov(φ(s, sp), C)|
∑

k∈cov(φ(s,sp),C)

ck(φ(s, sp)) (9)

We use the first measure (8) to guide the evolutionary process (selection). The
second measure is used by the evolutionary observer to decide whether a tran-
sition should be performed. The idea of introducing a mechanistic observer to
decide when a transition occurs corresponds to the work in [13]. Important to
remember is that although the fitness is determined using the induced phenotype
the fitness value is assigned to the genotype. Hence the process of differential
survival and reproduction operates at the genotype level and not at the level of
the induced phenotype.

3.5 Higher-Level Individuality and Evolvability

As was assumed in the beginning of this section, solutions (genotypes) are se-
lected according to their fitness described by (8). When a solution is selected,
it will replicate into a new solution. There is a certain probability that this
replication process has errors and in this way mutants can emerge.

The symbiosis between s and sp also has some consequences for the repro-
ductive process. In certain circumstances beneficial symbiotic relations will be
replicated as a whole. When the symbiotic partner is replicated as well, the sym-
biotic link, that is, their interaction scheme will be inherited in the process. The
underlying idea is that (possibly) good working units can survive over more than
one generation. The idea of performing this replication in group is based on our
previous work in the context of multi-level selection [12]. For now it is assumed
that decision to replicate the group is decided randomly using a probability q
(here, q = 0.5). More elaborate methods based on the type of interaction can be
used. Note that there is still a probability (1 − q) of individual replication.

This replication of the both genotypes is a first step toward a new higher-level
entity of selection. Although simple lower-level entities can sometimes replicate
in group they still have the possibility of spreading their own genetic material
(probability (1 − q)). In the second step, both partners give up their individual
replication process in favour of a group replication process. At that point, the
transition has occurred since replication becomes now the responsibility of the
higher-level structure. To make this final step the function fcov(s), defined in
the previous section, is used (see Equation (9)). When the induced phenotype
happens to solve the sub-problem defined by the covering set of constraints, i.e.
when fcov has reached a certain threshold value (here we selected fcov(s) = 1),
a new more complex individual is created whose genotype corresponds to the
induced phenotype of the previous symbiotic relation.

Let us take the example solution previously discussed. The solution described
by (3) with the phenotype given in (6) has a classical fitness value of f(s) =
0.33. The measure of the fitness restricted to the covering constraints set was
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fcov(s) = 1. In this case, if the solution is selected, the system creates a higher
level unit combining the genetic information of both partners. This means that
the expression of the genotype of the new of unit is:

(〈1, 1〉, 〈3, 2〉, 〈2, 3〉) (10)

This defines the transition step: Solutions are incrementally grown according to
their success in solving the sub-problem they are defined for.

The information sharing strategy we adopted allows information to be ex-
changed when values are conflicting on certain allele (such as this was the case
in example (5) on variable 1). This mimics a cross-over operation as full grown
solution are interacting. When partial solutions interact, the exchange can only
happen on conflicting parts of the genotype, yet, preserving the non conflicting
parts of the genotypes. In this case, we can consider this as a preserving cross-
over operation that avoids recombining good part of the solutions. In this way,
the model uses the notion of compositional evolution as discussed in [5,6].

4 Identifying Transitions in Complexity

In this section, we will illustrate the transition process by analysing the outcome
of a simple simulation of this model for random generated BINCSP instances of
15 variables each taking values in a domain of size 15 which are made easy or
difficult by tuning parameters such as the density of the constraints network p1
or the average tightness within the constraints p̄2 [11]. We propose to discuss
the results for two different setups of these parameters which yield respectively
a relatively easy (p̄2 = 0.3 and p1 = 0.9) and relatively difficult (p̄2 = 0.5
and p1 = 0.5) BINCSP instance. For each setup, we solved 25 instances and
performed 10 runs for each instance. The 250 runs were then analysed by looking
at the fitness relatively to the genotype size and the evolution of the size and
fitness over time. Increased size of the genotype reflects successive transitions
from simple units starting from length 2 up to a complex units that solves
greater number of constraints.

In Figure 2, we plotted for each setup the fitness and genotype size dynamics
for an isolated run, the average on all the runs of the fitness with respect to the
size and the average on all the runs of the duration a genotype remains at a
certain level before performing a transition.

In the first row of Figure 2 (the genotype and induced phenotype size have
been rescaled to [0, 1.0] for illustration purposes), a close relationship between
the trend of the genotype size and the fitness trend can be observed. We can con-
clude from this that transitions are needed to allow the fitness to reach higher
levels. For difficult problem instances, once the genotype size and the result-
ing phenotype size are fixed, we can observe that the fitness value still slowly
improves over time. This slow improvement illustrates a phase of conflict medi-
ation where the partial solution and its symbiotic partner try to reduce the set
of variables which yield conflicts. For easy problem instances, Fitness is closely
related to the genotype size, yet, we can observe that a good working symbiotic
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Easy Problem Instance Difficult Problem Instance

Fig. 2. The left column gives the results for an easy test case instance while the right
column gives the same result for a difficult test case instance. On the first row, the
evolution of the fitness relatively to the scaled genotype and phenotype size for one
simulation run is plotted. On the second row, the average required time for the next
transition to occur and on the last row, the fitness that corresponds to each genotype
size

relation has been discovered by the process (which can be seen on the graph by
a relatively small genotype size for which the corresponding phenotype defines
a complete solution). This good working collaboration is sustained for a while
before the conflicts among the symbiotic partners are resolved and a transition
can occur.

In the second row, which refers to the time required for different genotype
sizes to evolve toward a new level of complexity, we see that the time increases
as the genotypes become more complex. In other words, the conflict mediation
becomes more difficult as the interacting units grow in complexity. The tran-

.
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sitions which occurred at fast speed in the beginning require more time as the
evolutionary process goes on and the conflicts to be resolved (the variables which
share different values in the solution and its symbiotic partner) increase. We ob-
serve that this phenomenon is independent from the hardness of the problem
instance as the increased number of generations required to master a new level
of complexity is observed in both cases. Note also that this increase in time to
move between complexity levels has also been observed in nature [1].

Finally, a look at the fitness relative to the genotype size (averaged over
all runs) confirms the first observation that the increasing complexity at the
genotype level results in an increase of the functionality of this genotype. In
other words, the system requires transitions to attain the level of complexity
specified by the problem instance.

5 Conclusions

In this paper, we addressed the issue of the emergence of complexity in evolu-
tionary optimisation algorithm. Inspiration was found in the theories concerning
evolutionary transitions observed in Biology. These theories propose a gener-
alised explanation for the mechanism by which interacting lower level units can
produce new higher level ones. The proposed Transition algorithm uses symbio-
sis as the basic ingredient for the system to work. To illustrate this model, we
applied it to BINCSP and showed within this context how the mechanism of
transition worked. The algorithm was also compared thoroughly to other evolu-
tionary approaches for solving BINCSP [7]. These experiments showed the great
promise for the discussed technique.

References
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