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Abstract- This paper proposes an evolutionary ap-
proach for the composition of solutions in an incremen-
tal way. The approach is based on the metaphor of tran-
sitions in complexity discussed in the context of evolu-
tionary biology. Partially defined solutions interact and
evolve into aggregations until a full solution for the prob-
lem at hand is found. The impact of the initial popula-
tion on the outcome and the dynamics of the process is
evaluated using the domain of binary constraint satis-
faction problems.

1 Introduction

Stochastic Local Search Optimization covers a lot of op-
timization techniques which aim to traverse the solution
space in the most efficient way [Hoos and Stützle, 2005].
These techniques, such as evolutionary algorithms (EA),
evolve representations of fully qualified solutions and try
to identify which part of the search space is more likely to
contain the best one.

As an alternative to evolving completely speci-
fied solutions, this paper proposes to grow incre-
mentally partial solutions using a biological model
as inspiration: Evolutionary transitions in complexity
[Maynard Smith and Szathmáry, 1995, Michod, 1999]. The
Transition model we propose is a continuation of previous
attempts to introduce a collaborative framework into evolu-
tionary algorithms [De Jong and Potter, 1995, Potter, 1997,
Watson and Pollack, 2000, Watson and Pollack, 2002]. Our
approach tries to mimic the principle of the biological tran-
sitions in generational evolutionary search algorithms where
the emergence of complexity is the result of the evolution-
ary search process rather than the result of a manual “divide
and conquer” approach.

In this model, we consider partially defined solutions
that specify just an incomplete solution to the problem at
hand. As a consequence, these partially defined solutions
cannot hope to solve the complete problem unless they col-
laborate with each other. When beneficial collaborations are
identified, a transition can occur, i.e., they are aggregated
into a new (more complex) solution. This aggregation can
represent in turn a partially or fully defined solution. This
transition operates therefore as an aggregation mechanism
or, to refer to the biological counterpart, as the fixation ofa
symbiotic relation.

To illustrate the Transition model, we will discuss it
within the context of Binary Constraint Satisfaction Prob-
lems (BINCSP). BINCSP forms an interesting class of
problems to work on. First, it is an already well studied
problem class [Tsang, 1993, Achlioptas et al., 2001] and
therefore, it can be used as a firm benchmark for compar-
ing with other evolutionary techniques [van Hemert, 2002,
Craenen et al., 2003]. Second, it is not a toy problem specif-
ically made for illustrating our model, but is a NP-complete
problem where we shall deliberately use hard to solve prob-
lem instances to benchmark our Transition model. Third,
and most importantly, it can easily be described in terms of
the aggregation of simple solution units. The idea of ag-
gregating simple solution units was used before to speed
up constraint programming techniques by learning which
aggregations are undesirable, hence, should be avoided
[Frost and Dechter, 1994]. Here we shall take the opposite
approach whereby we evolve aggregations which contribute
to solving the problem i.e., aggregations that are desirable.

In previous work [Defaweux et al., 2005] the Transition
model described here was successfully tested against other
evolutionary techniques for BINCSP. The model succeeded
in incrementally building solutions for the problems at hand.
In this paper, we will test the sensitivity of the Transition
model to the initialization of the population of partially de-
fined solutions. Studying the impact of initial population
on the outcome of an evolutionary algorithm can eventually
help us draw conclusions about the algorithm limitations. If
no significant difference between various initial population
setup can be observed, then, we can conclude that our al-
gorithm can be applied to the problems without the need of
preliminary parameter tuning. In the latter case, we can say
that the algorithm is robust toward initial condition setups.
We will first introduce shortly BINCSP and the transition
model. Then, we provide the reader with the results of em-
pirical research on this model given two different categories
of population setups i.e randomly defined and sound popu-
lations.

2 Related Work

The first Genetic Algorithms (GA’s) that worked with par-
tially defined solutions were referred to as Messy GA’s
[Goldberg et al., 1989, Goldberg et al., 1990]. The idea be-
hind Messy GA’s was to explicitly evolve the building
blocks of a solution instead of doing this implicitly in



the completely defined, fixed-size representation. Since
Messy GA’s worked with a variable length genotype, the
crossover operation was adapted into an equivalent oper-
ator for variable length representation. Moreover, the is-
sues of over- and under-specification when using a variable
length representation were introduced in that context. Over-
specification referred to the fact that two or more values
are assigned for the same position. Under-specification re-
ferred to the possibility that the solution did not contain a
value for a particular position in the representations. Messy
GA’s are related to our approach in the sense that both work
with variable length representations and that one has to deal
with issues of over- and under-specification and reproduc-
tion. Messy GA’s do however not address the question of
collaboration between partially defined solutions, whether
the aggregation of units is the result of a good collaboration
or not and how complexity arises in an emergent way.

The first attempts to introduce collaboration and cooper-
ation in evolutionary computation were strongly related to
a divide and conquer approach where sub-problems are de-
rived from the entire problem. Each sub-problem is solved
through evolutionary techniques and the collaboration of
the solutions yields a complete solution for the problem at
hand [De Jong and Potter, 1995, Potter, 1997]. The divide
and conquer approach however is the result of engineering
techniques and lacks the principle of emergence of the com-
plete solutions through the interactions of simple ones.

Other techniques to promote collaboration exist. Among
them, an interesting approach is given by the so called
Multi-Level Selection models (MLS) [Lenaerts et al., 2002,
Lenaerts et al., 2003]. In this model, solutions are spread
into groups in which they evolve and these groups can then
either disappear at each generation or maintain themselves
indefinitely. The groups as a whole can then identify partial
or complete solution to the problem. Hence, evolution by
MLS provides a mechanism to identify collaborative units.
Because of this benefit, we are now designing a system that
combines MLS with the Transition model in order to im-
prove the search process.

Finally, the symbiogenetic model
[Watson and Pollack, 2000, Watson and Pollack, 2002]
is one of the few mechanisms which tries to address this
problem of incremental search. This approach suggests to
consider incompletely defined solutions. The undefined
parts of the solutions are filled in with “don’t care” symbols.
In order to evaluate a solution, a fully defined solution is
obtained by aggregating the solutions with others until a full
description of a solution is obtained. This way, solutions
evolve within a context defined by the other solutions and
solutions which solve nicely a part of the problem are
more likely to be selected for the next generation. There is
however a serious cost to this approach. In order to evaluate
a solution, several contexts need to be built, this yields a
serious overhead in the evaluation process. Furthermore,
this approach still requires fully described solutions forthe
evolutionary process to perform, among others, evaluation
and selection. Finally, Watson works with initial sound
population and considers this population in the context of
an ecosystem. As the evolutionary process goes on, new

solutions may be added to the population but no partial
solution ever disappear as the consequence of selection.
This way, the symbiogenetic model of Watson guarantees
that the system may eventually find a solution as the right
combination may always occur. However, the requested
time for this solution to emerge can be quite expensive as
the population to work on becomes larger over time.

3 Binary Constraints Satisfaction Problems

Constraint Satisfaction Problems (CSP) [Tsang, 1993] form
a NP-complete problem class where, on the one hand, one
has a set of variablesX associated with possible domain
valuesD and, on the other hand, a set of constraintsC de-
fined on this set of variables, which prohibits combinations
of assignments to occur. The problem consists of finding
an assignment to the whole set of variables from the asso-
ciated domain values so that all constraints are satisfied. If
this proves to be impossible then the corresponding prob-
lem is said to be unsolvable. A variant of this problem is
BINCSP, where each constraint is defined on at most two
variables. This forms no restriction on the general form of
CSP as every CSP can be rewritten into a BINCSP and vice
versa [Rossi and Dhar, 1990].

Let us take as an illustration the following BINCSP: con-
sider a set of six variables:X = {x1, x2, x3, x4, x5, x6} all
taking values inD = {1, 2, 3}. We consider the following
set of constraints:

C = {(x1 6= x2), (x2 6= x3), (x3 6= x1),
(x4 6= x5), (x5 6= x6), (x6 6= x4),
(x1 = x4), (x2 = x5), (x3 = x6)}

(1)

This setup of constraints consists of nine binary constraints.
Each binary constraint defines a relation on two variables.
Also, for each pair of variables, only one binary constraint
may be defined.

The problem involves finding the correct assignment for
the variables so that all these constraints are satisfied. We
denote the assignment of one variablexi ∈ X with value
d ∈ D by 〈d, i〉 wherei is the index of the variable we
consider. Using this notation, we represent the simultaneous
assignment of variablesx1, x2 andx4 with respective values
v1, v2 andv4 as

(〈v1, 1〉, 〈v2, 2〉, 〈v4, 4〉)

4 Transition Models

In this section, we will illustrate the key features of our tran-
sition model through a description of the simple example
described in Equation (1).

4.1 Preliminary Definitions

We first introduce the reader with some definitions we will
use throughout the model description:

• A Partial Solutionis the assignment of a subset of the
variable set. An example of a partial solution is given
by (2).



• A Solutionis the particular case where assignments
are defined for the entire variable set.

• A Genotypeis the representation of the assignment
of variables. For example, (2) is the genotype of the
solution that assigns variables 1 and 2 with respective
values 1 and 3.

• A Symbiotic Partneris another (partial) solution with
which a solution is linked. (An example is given by
(3)).

• An (induced) phenotypeof a solution is the variable
assignments one obtains when working out the sym-
biotic relation of the solution with its symbiotic part-
ner. The way such a phenotype is obtained is ex-
plained in the next section. If we denote bys the
solution and bysp its symbiotic partner, we will de-
note the induced phenotype ofs linked with sp by
φ(s, sp).

4.2 Basic Representation

Our model is a simple generational evolutionary algorithm
that starts with a population of partially defined solutions.
A partial solutions that only defines values forx1 andx2 is
for example:

(〈1, 1〉, 〈3, 2〉). (2)

(2) is called the genotype of the solution. A solution isfully
qualifying in our example problem when assignments are
defined for all six variables.

One of the basic requirements of incremental search is to
define how these partially defined solutions interact. This is
explained using the following example. Let solutions de-
fined by (2) interact with a symbiotic partnersp defined by
(〈3, 1〉, 〈2, 3〉)1. We call this interacting partner the symbi-
otic partner of (2) as a reference to the biological counter-
part of our model and denote the relation by:

(〈1, 1〉, 〈3, 2〉) ↔ (〈3, 1〉, 〈2, 3〉). (3)

The underlying idea behind interaction is the sharing of in-
formation between the partners. The outcome of the infor-
mation sharing between a solution and its symbiotic partner
is called the phenotype of the solution. For example, the
way the phenotype of the solution with the symbiotic part-
ner described in (3) is obtained follows these steps:

• The solution genotype is extended with the assign-
ments found in its symbiotic partner:

〈

(

1
3

)

, 1〉, 〈3, 2〉, 〈2, 3〉 (4)

• Conflicting values are resolved by selecting randomly
one of the possible choices. In our example, a conflict
needs to be resolved for variablex1. We can choose

1At this time, we limit ourselves to pairwise interaction, however, in-
teraction could also happen with more than one partner and will be studied
in further work

between the values1 and3. A possible conflict reso-
lution for this example would be:

〈1, 1〉, 〈3, 2〉, 〈2, 3〉 (5)

Conflicting values are equivalent to over-specified
representations in [Goldberg et al., 1989]. Our strat-
egy to solve this over-specification problem corre-
sponds to the probabilistic strategy proposed there.

(5) is called the (induced) phenotype of the partial solution
(2). This phenotype is used for evaluation and the result
of the evaluation is assigned to the genotype (2). We de-
note the phenotype of a solutions interacting with a symbi-
otic partnersp by: φ(s, sp). The phenotype assigned to the
symbiotic partner is obtained the same way. Yet, the pol-
icy about conflicting values may yield another representa-
tion than the one we obtained for the initial partial solution.
This asymmetry between the phenotype of a solution and
the phenotype of its symbiotic partner increases the chance
for the exploration of the evolutionary process.

4.3 Evaluation

In the context of BINCSP, we will consider two types of
evaluation. The first type of evaluation considers the quality
of the partially defined solution with respect to the entire
constraints set. This evaluation function corresponds to the
classical approach of fitness computation for CSP solving
EA’s. That is the ratio of constraints from the constraints
set that are satisfied by the solution. The second type of
evaluation only considers the subset of constraints that are
covered by the partial solution.

Let us denote byck(p) the outcome of evaluating pheno-
typep with constraintk, we say thatp coversck if p contains
assignments for all variables contained inck, furthermore,
p satisfiesck if the assignment values inp do not violate the
constraints defined byck.

ck(p) =

{

1 p covers ck ∧ p satisfies ck

0 otherwise
(6)

Given this, the classical evaluation of the solution described
by (2) and denoted bys working with a symbiotic partner
sp is given by:

f(s) =
1

|C|

∑

k∈C

ck(φ(s, sp)) (7)

whereC is the constraints set,|C| the size of the constraints
set andφ(s, sp) the induced phenotype ofs when sharing
information with its symbiotic partner.

This fitness value is a measure of the quality of the par-
tially defined solution relatively to the entire set of con-
straints. It does however not give any indication of the qual-
ity of the partially defined assignmentsrelatively to the con-
straints it covers. To see whether an association works fine
or not, we therefore define a restricted fitness measure that
only considers the constraints covered by the phenotype of
the solution. If we denote bycov(s, C) the set of constraints



covered bys, the covering fitness measure is given by:

fcov(s) =
1

|cov(φ(s, sp), C)|

∑

k∈cov(φ(s,sp),C)

ck(φ(s, sp))

(8)
We use the first measure (7) to guide the evolutionary pro-
cess (selection). The second measure is used to decide
whether a solution and its symbiotic partner should be
merged into a more qualifying solution through the use of a
transition.

Note thatfcov is related to the strategy adopted by Messy
GA’s for dealing with under-specification. However, in our
model, this covering fitness is not used to guide the evolu-
tionary process. It is used as an observer that decides when
a new level of selection emerges.

4.4 Reproduction and Transition

In our evolutionary process, solutions are selected accord-
ing to their fitness described by (7). We consider a very
simple evolutionary process that consists of replicating,i.e.
copying highly fit individuals, with a small probability of
mutation. When a solution is selected, it will therefore be
replicated into a new solution. At the same time, the se-
lected solution can help its symbiotic partner to replicate.
This replication of the symbiotic partner is currently random
based, alternatively it could reflect a more problem specific
strategy. When the symbiotic partner is replicated as well,
the symbiotic link, that is, their interaction scheme will be
inherited in the process. The underlying idea is that (pos-
sibly) good working units can survive over more than one
generation. The idea of performing this replication in group
is based on our previous work in the context of multi-level
selection [Lenaerts et al., 2002, Lenaerts et al., 2003].

There is a special case where the result of the interaction
will be used for replication rather than the genotype of a
solution. This special case occurs when the phenotype hap-
pens to solve the sub-problem defined by the covering set
of constraints. That is, whenfcov is greater than a certain
threshold value. In this latter case, the transition creates a
new solution at a higher complexity level. Here we define
complexity as the number of assigned variables in the solu-
tion.

Let us take the example solution previously discussed.
The solution described by (2) with the phenotype given
in (5) has a classical fitness value of0.33. The measure
of the fitness restricted to the covering constraints set was
1. In this case, if the solution is selected, the phenotype
and not the genotype will be replicated and passed on to
the offspring. This means that the expression of the off-
spring genotype will be:(〈1, 1〉, 〈3, 2〉, 〈2, 3〉) instead of
(〈1, 1〉, 〈3, 2〉). This is the key of our incremental approach.
Solutions are incrementally grown according to their suc-
cess in solving the sub-problem they define.

4.5 About transition models

Although our model was adapted to an optimization frame-
work, it still shares important properties with the biological
Transition model on which it was based.

First, we do not use the standard genetic algorithm op-
erator for recombination, i.e., crossover. Instead, we usea
simple replicator model where the individuals (in our case
partial-solutions) are only concerned with copying them-
selves. This replication process is believed to be at the ori-
gin of complexity in biological systems.

Second, we suppose that all partial solutions are collab-
orating in order to find the solutions. This is inspired by a
biological claim that requires cooperation as a prerequisite
for the emergence of complexity [Michod, 1999]. As we
are interested in building complex solutions, we therefore
enforce cooperative units. This is a little different from the
biological world where all kinds of interactions are consid-
ered and where the question of emergence of cooperation is
addressed. We are not concerned (at this time) with how co-
operation emerges between the solution units. We suppose
that these units are already cooperating as we wish them to
build complex entities. As indicated in Section 2, this issue
will be investigated when the multi-level selection frame-
work is combined with the Transition model.

Finally, the information sharing strategy we adopted al-
lows information to be exchanged when values are conflict-
ing on certain allele (such as this was the case in example
(4) on variable 1). When fully grown genotypes are created,
this strategy corresponds to a simple uniform crossover op-
eration as it is the case in GA’s. However, this crossover op-
eration is simulated as full grown solutions emerge. When
partial solutions interact, the exchange can only happen on
conflicting parts of the genotype, yet, preserving the non
conflicting parts of the genotypes. We can therefore see that
our Transition model is able to mimic uniform crossover but
combines this with a preservation mechanism that prevents
the destruction of good working parts of the solutions.

5 Validation

The validation of this model has been performed against
three evolutionary techniques [van Hemert, 2002]:

• Co-evolutionary Constraints Satisfaction (CCS)

• Micro-genetic algorithm with iterative descent
(MID)

• Stepwise Adaptation of Weights (SAW)

The results were described in [Defaweux et al., 2005] and
the conclusion was that the model succeeds in evolving
fully specified solutions by incrementally aggregating par-
tial units. Furthermore, comparing the Transition model
with the three problem-specific evolutionary techniques
above reveals that the Transition performs well against these
techniques without the need to add problem-specific feature
to it. Hence, this opens an interesting door toward the hy-
bridization of the Transition model with problem-specific
heuristics.

So far, no test was performed to check how sensitive
the Transition model is with respect to its initial parame-
ter setup. In this paper, we discuss the robustness of the
model regarding the initial population setup. Other param-
eters such as mutation rate or eventually adaptation of the



aggregation mechanism will be considered in further stud-
ies.

6 Experimentation

6.1 Goal

The way the initial population is generated influences the
outcome of an evolutionary algorithm. We compare two
different setups for the initial population and see whetherit
influences the outcome of the evolutionary process as well
as its dynamics. We will consider the two following ini-
tial condition setups (which lie at the 2 extreme possible
setups):

• A uniform random generated population of 100 par-
tial solutions. The initial partial solutions represents
the assignments of only two distinct variable. As
such, they can expect to solve certain constraints and
therefore receive a fitness greater than zero without
the need for collaboration. However, restricting the
population to 100 partial solutions makes it impossi-
ble for all assignments to each variable to be present
in the population in the beginning.

• An initial soundpopulation of elementary solution
units. By elementary solution unit, we understand the
assignment of exactly one variable and by sound pop-
ulation we assume that all possible assignments for
each variable are present. Since an elementary solu-
tion unit defines exactly one variable, it can not have
a fitness greater than zero unless it collaborates with
at least one other elementary unit. This follows from
the constraints, which are defined on exactly two vari-
ables. For a BINCSP of 15 variables each of domain
15, this result in an initial population of 225 solution
units.

6.2 Experimental setup

We use randomly generated problem instances of
BINCSP. The RandomCSP package [van Hemert, 2004]
is used to generate the suite of test problem instances
[van Hemert, 2002]. To scale the difficulty of the problem
instances, these CSP are generated according to two
parameters. The first parameter is the density of the
BINCSP:

p1 =
|C|

(

n

2

) .

This parameter reflects how many constraints there are rel-
atively to the maximum amount of constraints there can be.

The second parameter is the average tightnessp̄2 that re-
flects the average complexity of the constraints. That is,
how many invalid simultaneous assignments of two vari-
ables are allowed in one constraint, averaged over all con-
straints. If we denote by|c| the number of assignments in
the constraintsc that satisfiesc, and bym the domain size
of the variables in constraintsc, we have:

p̄2 =
1

|C|

∑

c∈C

(

1 −
|c|

m2

)

Density Tightness
p1 0.1 0.3 0.5 0.7 0.9

0.1 1.0 1.0 1.0 1.0 0.98
(2.6) (3.7) (6.5) (14.8) (3352.9)

0.3 1.0 1.0 1.0 0.21 -
(3.5) (12.8) (61.1) (7363) -

0.5 1.0 1.0 0.51 - -
(4.9) (32) (14426) - -

0.7 1.0 1.0 0.31 - -
(7.5) (89.8) (8710) - -

0.9 1.0 0.98 - - -
(10.6) (3961) - - -

Table 1: success ratio and Average Number of Evaluations
for random generated population

p1 andp̄2 are called “order parameters”, as they can be used
to order the problem instances of a class of problems. By
keeping the number of variables and the domain size of
each variable constant, and then varying these parameters
we can induce a phase transition [Cheeseman et al., 1991].
For low values of the parameters, all problem instances will
be solvable. When increasing them, at some point, unsolv-
able problems appear, and at some higher values, all the
problems become unsolvable. The conjecture is that the lo-
cation of the phase transition, as given by parameter coordi-
nates, coincides with the location of the hardest to solve (or
to proof unsolvable) problems. This gives rise to the typical
easy-hard-easy pattern.

6.2.1 Simulation Parameters

We varyp1 andp̄2 from 0.1 up to 0.9 with a step size of 0.2.
For each combination ofp1 andp̄2, we generate 25 random
problem instances for a BINCSP of 15 variables each taking
values in a domain of size 15.

For each of the 25 problem instances generated per com-
bination ofp1,p̄2, we proceed with 10 runs, each run using a
different seed, This yield a total of 250 runs for each param-
eter setup. The maximum amount of evaluations is set to
100 000. We are interested in generating solvable instances
so that we can compare the success ratio in both setups. As
a consequence, we did not generate problem instances for
high values ofp1 andp̄2 since solvable instances either do
not exist or cannot be found in a reasonable amount of time.

We have tested this setup with the two types of initial
populations described earlier.

6.2.2 Observations

We are interested in observing following information:

• Solution sizes: We observe the maximum and min-
imum size of the solutions over time, together with
the size of the intersection of the solutions with their
symbiotic partner, i.e. the number of assignments
for the same variable present in both interacting solu-
tions. From this intersection, we distinguish conflict-
ing values from others, that is, values for the same
variable which differ in both partial solutions.



Density Tightness
p1 0.1 0.3 0.5 0.7 0.9

0.1 1.0 1.0 1.0 1.0 0.99
(4) (5) (7) (13) (3627)

0.3 1.0 1.0 1.0 0.28 -
(5) (12) (43) (11758) -

0.5 1.0 1.0 0.54 - -
(6) (25) (11409) - -

0.7 1.0 1.0 0.29 - -
(8) (61) (9763) - -

0.9 1.0 0.97 - - -
(11) (2335) - - -

Table 2: success ratio and Average Number of Evaluations
for sound population

• Fitnesses: We are interested in the fitness evolution
over time, the best achieved fitness, the average fit-
ness of the population, the fitness of the biggest indi-
vidual.

• Success ratio: This gives the ratio of successful runs
over the total amount of runs

• Average amount of Evaluations to reach a solution:
this gives a measure of how fast our algorithm can
reach the goal (the solution).

This information can be split up in two categories. The first
one helps us to observe the dynamics of the evolutionary
process (evolution of solutions sizes and fitnesses) and the
second category helps us to compare how well the two ini-
tial populations perform (success ratio and average amount
of evaluation needed to reach the solution).

6.3 Results

6.3.1 Comparing Success Ratio and Average Evaluation
Steps

In Table 1 and 2, we can observe the success ratio and the
average number of evaluation steps needed to reach a solu-
tion for random generated population and sound population,
respectively . In Table 2, we have underlined the success ra-
tio of the sounded population whenever it performs better
than the uniform randomly generated population. We can
see that, in the overall, the initial population has little effect
on the chance of success, which is interesting as it indicates
that our algorithm performs well with a small initial popula-
tion and hence does not need a big and complete population
to achieve good results.

For very easy problems, that is, problems where solu-
tions are found on average in less than 10 steps, the ran-
domly generated population finds it a little faster. This is
probably due to the fact that the initial partial solutions are
already aggregated in pairs, speeding up the convergence
toward the solutions. However, when the problem requires
a little more exploration, yet remaining easy, sound popula-
tions are faster as they can combine good units from scratch
and need not to solve conflicts as the initial pairs in the ran-
dom generated population are requested to do. However,

Comparison Wilcoxon
of Mann-Whitney

success-ratio rank-test
p1 = 0.3,p2 = 0.9 0.3603 < 0.0001
p1 = 0.5,p2 = 0.5 0.4735 0.2065
p1 = 0.5,p2 = 0.7 0.4953 0.5887
p1 = 0.7,p2 = 0.3 0.0609 0.07869
p1 = 0.9,p2 = 0.1 0.0926 < 0.0001

Table 3: Significance in the difference between results for
initial setups for difficult problems: the first column gives
the p-values for the test of equivalence between the suc-
cess ratio of both initial setups, the second column gives
the p-value for the Wilcoxon-Mann-Whitney rank test be-
tween both setups for the equivalence of the distribution of
the number of required evaluations to reach a solution.

for very difficult problems (p1 = 0.5, p2 = 0.5 ; p1 = 0.7,
p2 = 0.5 ; p1 = 0.3, p2 = 0.7 ; p1 = 0.1, p2 = 0.9)
where we observe that the sound population performs as
well or slightly better than the random generated popula-
tion, we can see that the number of evaluations needed is
higher for the sound population. An explanation for this
may lie in the initial exploration process. The random gen-
erated population already starts with pairs of solutions; if
good pairs are present, they will be favored over the others
by the fitness proportionate selection. The sound population
however needs to build these basic pairs from scratch. It will
therefore favor a greater exploration in the very beginning
of the process. This yields slightly better results when con-
sidering the success ratio but this exploration has a price as
it converges more slowly to a solution.

6.3.2 Significance of the initial population setup

Table 1 and Table 2 show little difference between the two
initial setups. To assess whether these differences are sig-
nificant or not, we applied a two samples test to the re-
sult set obtained with each population setup for the difficult
problem instances. The tests will eventually not allow us
to reject the hypothesis that both process show an equiva-
lent behavior. Since we could not suppose that our sample
follows a normal distribution, we chose for the Wilcoxon-
Mann-Whitney test [Barlow, 1995].

The first column of Table 3 gives the p-value of a two
samples test for the comparison of the success ratio obtained
with each initial population setup. The second column pro-
vides us with the p-value of the Wilcoxon-Mann-Whitney
two sample rank test that checks whether the distribution
of the number of evaluations to reach a solution between
both initial population setups are equivalent. We can see
that for a significance level of 5%, the equivalence in the
success ratio can not be rejected for any of the test case.
In other words, we cannot conclude that the initial popula-
tion setup yields significantly different chance of successin
both cases. Furthermore, the necessary computational time,
measured in number of evaluations, to obtain a solution is
not significantly different either, when considering the very
difficult test cases (test-cases with a success ratio< 0.7).
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Figure 1: Evolution of the fitnesses for random generated
population and sound population

However, there exists a significant difference when consid-
ering not too difficult instances (such asp1 = 0.9, p2 = 0.3
andp1 = 0.1, p2 = 0.9). From these statistics, we may
suppose that the chance of success are not significantly dif-
ferent from one population setup to another and that the
speed of the algorithm is probably not affected by this initial
setup when considering very difficult instances. To study
these similarities in more details, we will now examine the
dynamics of the search process on one of the difficult test
cases.

6.3.3 Comparing Dynamics

To compare the dynamics for both initial population setups,
we chose to illustrate it on an extremely difficult BINCSP
(p1 = 0.7 andp2 = 0.5). This difficult class of problems
was chosen because it is where the greatest exploration is re-
quired and therefore with high probability will show greater
differences between the two population setups. In Figure 1,
we can observe the evolution of the best fitness for both pop-
ulation setups. In Figure 2 we show the difference between
the random generated population and the sound population
for the averages of the maximum size, minimum size, the
size of the set of variables shared by both the partial so-
lution and its symbiotic partner (we refer to this set as the
intersection), and the size of the set of conflicting values in
this intersection. Figure 3 shows the evolution of these sizes
for the sound population initial setup.

The fitness evolution confirms the fact that even if sound
populations perform slightly better in general, the dynamics
of both process are very similar and both initial population
setups succeed in solving over 90% of the constraints on av-
erage. Figure 2 confirms the similarity in the evolutionary
dynamics and illustrates that this similarity is present from
the very beginning of the evolutionary process. We can ob-
serve that the sizes follow the same trends as the difference
remains low (as it never exceeds1.0 in absolute value). The
difference between both population setups is therefore not
significantly high and this confirms our hypothesis of ro-
bustness of this model toward initial population setup.
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Figure 2: The difference in evolution of the genotype sizes
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Figure 3: Evolution of the genotype sizes for the sound pop-
ulation

In Figure 3, we plot the evolution of the sizes for 40
generations. We observe that the maximum size converges
quickly towards a value which is smaller than the size of a
fully defined solution (solution are fully defined when the
15 variables of the problem instance have been assigned).
This convergence toward a partially defined solution illus-
trates the difficulty for the process to find a solution and the
necessity for the solutions to cooperate with others to find a
good compromising solution. What can be said considering
the evolution of the fitness on 1000 steps in Figure 1 and
the evolution of sizes in 40 steps in Figure 3 is that if the fit-
ness keeps increasing over time, the maximum size seems to
converge relatively fast toward a maximum value. The size
graph only covers the 40 first steps and therefore cannot be
compared with the fitness graph. However, we can conclude
from this that the increase in fitness we observe in Figure 1
is the result of (re)combination through the symbiotic re-
lation. Furthermore, on average, the sound population re-
quests more time to achieve a solution, which illustrates the
fact that the sound population succeeds in maintaining suf-
ficient diversity among the population to allow exploration
to occur.



7 Conclusion

In this paper, we propose an incremental evolutionary algo-
rithm based on the Transition metaphor described in Biol-
ogy. We apply this model to various instances of the Bi-
nary Constraints Satisfaction Problem with different prop-
erties to test whether this incremental model is sensitive to
its initial population conditions. We use solvable BINCSP
instances scaling from very easy to very difficult.

We consider two methods for creating the initial popula-
tions. First, a classical initial EA population consistingof
100 partially defined solutions and second, a sound popula-
tion consisting of all possible variable assignments as ele-
mentary solution units.

From our empirical results we deduce that, on the over-
all, a sound population achieves slightly better results than
a randomly generated population, but this difference is not
significantly different. Also, when observing the dynamics
of these processes on a particularly difficult problem, we ob-
serve that the dynamics are similar. Therefore, we conclude
from this that the overall improvement of the sound popula-
tion over the random generated population is not sufficiently
high to stress that the initial population has an impact on the
evolutionary process. This result is quite interesting as it
shows that our transition model is robust against the initial
population setup.
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