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Abstract- This paper proposes an evolutionary ap- To illustrate the Transition model, we will discuss it

proach for the composition of solutions in an incremen- within the context of Binary Constraint Satisfaction Prob-
tal way. The approach is based on the metaphor of tran- lems (BINCSP). BINCSP forms an interesting class of
sitions in complexity discussed in the context of evolu- problems to work on. First, it is an already well studied
tionary biology. Partially defined solutions interact and  problem class [Tsang, 1993, Achlioptas et al., 2001] and
evolve into aggregations until a full solution for the prob-  therefore, it can be used as a firm benchmark for compar-
lem at hand is found. The impact of the initial popula- ing with other evolutionary techniques [van Hemert, 2002,
tion on the outcome and the dynamics of the process is Craenen et al., 2003]. Second, it is not a toy problem specif-
evaluated using the domain of binary constraint satis- ically made for illustrating our model, but is a NP-complete

faction problems. problem where we shall deliberately use hard to solve prob-
lem instances to benchmark our Transition model. Third,
1 Introduction and most importantly, it can easily be described in terms of

the aggregation of simple solution units. The idea of ag-

Stochastic Local Search Optimization covers a lot of opgregating simple solution units was used before to speed
timization techniques which aim to traverse the solutiomp constraint programming techniques by learning which
space in the most efficient way [Hoos and Stiitzle, 2005hggregations are undesirable, hence, should be avoided
These techniques, such as evolutionary algorithms (EA)rost and Dechter, 1994]. Here we shall take the opposite
evolve representations of fully qualified solutions and tryapproach whereby we evolve aggregations which contribute
to identify which part of the search space is more likely tdo solving the problem i.e., aggregations that are desirabl
contain the best one. In previous work [Defaweux et al., 2005] the Transition

As an alternative to evolving completely speci-model described here was successfully tested against other
fied solutions, this paper proposes to grow increevolutionary techniques for BINCSP. The model succeeded
mentally partial solutions using a biological modelin incrementally building solutions for the problems at tian
as inspiration: Evolutionary transitions in complexityln this paper, we will test the sensitivity of the Transition
[Maynard Smith and Szathmary, 1995, Michod, 1999]. Thenodel to the initialization of the population of partiallg-d
Transition model we propose is a continuation of previouined solutions. Studying the impact of initial population
attempts to introduce a collaborative framework into evoluon the outcome of an evolutionary algorithm can eventually
tionary algorithms [De Jong and Potter, 1995, Potter, 199%glp us draw conclusions about the algorithm limitatiofs. |
Watson and Pollack, 2000, Watson and Pollack, 2002]. Omo significant difference between various initial populati
approach tries to mimic the principle of the biological transetup can be observed, then, we can conclude that our al-
sitions in generational evolutionary search algorithmergh gorithm can be applied to the problems without the need of
the emergence of complexity is the result of the evolutiorpreliminary parameter tuning. In the latter case, we can say
ary search process rather than the result of a manual “divitleat the algorithm is robust toward initial condition sedup
and conquer” approach. We will first introduce shortly BINCSP and the transition

In this model, we consider partially defined solutiongnodel. Then, we provide the reader with the results of em-
that specify just an incomplete solution to the problem gtirical research on this model given two different categeri
hand. As a consequence, these partially defined solutioaspopulation setups i.e randomly defined and sound popu-
cannot hope to solve the complete problem unless they cdétions.
laborate with each other. When beneficial collaboratioas ar
identified, a transition can occur, i.e., they are aggrebat® Related Work
into a new (more complex) solution. This aggregation can
represent in turn a partially or fully defined solution. ThisThe first Genetic Algorithms (GA's) that worked with par-
transition operates therefore as an aggregation mechanisally defined solutions were referred to as Messy GAs
or, to refer to the biological counterpart, as the fixatiomof [Goldberg et al., 1989, Goldberg et al., 1990]. The idea be-
symbiotic relation. hind Messy GAs was to explicitly evolve the building

blocks of a solution instead of doing this implicitly in



the completely defined, fixed-size representation. Sine®lutions may be added to the population but no partial
Messy GA's worked with a variable length genotype, thesolution ever disappear as the consequence of selection.
crossover operation was adapted into an equivalent opdiis way, the symbiogenetic model of Watson guarantees
ator for variable length representation. Moreover, the ighat the system may eventually find a solution as the right
sues of over- and under-specification when using a variabtembination may always occur. However, the requested
length representation were introduced in that contextrOvetime for this solution to emerge can be quite expensive as
specification referred to the fact that two or more valuethe population to work on becomes larger over time.
are assigned for the same position. Under-specification re-
ferred to the possibility that the solution did not contain &3 Binary Constraints Satisfaction Problems
value for a particular position in the representations. $yfes
GA's are related to our approach in the sense that both woGonstraint Satisfaction Problems (CSP) [Tsang, 1993] form
with variable length representations and that one has to deaNP-complete problem class where, on the one hand, one
with issues of over- and under-specification and reprodubas a set of variableX associated with possible domain
tion. Messy GAs do however not address the question afaluesD and, on the other hand, a set of constraitde-
collaboration between partially defined solutions, whethdined on this set of variables, which prohibits combinations
the aggregation of units is the result of a good collaboratioof assignments to occur. The problem consists of finding
or not and how complexity arises in an emergentway.  an assignment to the whole set of variables from the asso-
The first attempts to introduce collaboration and coopetiated domain values so that all constraints are satisffed. |
ation in evolutionary computation were strongly related tahis proves to be impossible then the corresponding prob-
a divide and conquer approach where sub-problems are dem is said to be unsolvable. A variant of this problem is
rived from the entire problem. Each sub-problem is solveBINCSP, where each constraint is defined on at most two
through evolutionary techniques and the collaboration ofariables. This forms no restriction on the general form of
the solutions yields a complete solution for the problem aZSP as every CSP can be rewritten into a BINCSP and vice
hand [De Jong and Potter, 1995, Potter, 1997]. The divideersa [Rossi and Dhar, 1990].
and conquer approach however is the result of engineering Let us take as an illustration the following BINCSP: con-
techniques and lacks the principle of emergence of the corsider a set of six variablest = {x1, z2, x3, 24, x5, 26} all
plete solutions through the interactions of simple ones.  taking values inD = {1,2,3}. We consider the following
Other techniques to promote collaboration exist. Amonget of constraints:
them, an interesting approach is given by the so called

Multi-Level Selection models (MLS) [Lenaerts et al., 2002, C= {(z1 # w2), (22 # 23), (x3 # 11),
Lenaerts et al., 2003]. In this model, solutions are spread (x4 7 5), (x5 7 6), (26 7 Ta), (1)
into groups in which they evolve and these groups can then (1 = 24), (22 = 75), (w3 = 76 )}

s setup of constraints consists of nine binary congsain
ach binary constraint defines a relation on two variables.
Iso, for each pair of variables, only one binary constraint

indefinitely. The groups as a whole can then identify parti
or complete solution to the problem. Hence, evolution b)&
MLS provides a mechanism to identify collaborative unitsmay be defined

Because of this benefit, we are now designing a system thatThe problem involves finding the correct assignment for

combl?hes MLS r\]N'th the Transition model in order to Im'the variables so that all these constraints are satisfied. We
prove the search process. denote the assignment of one variablec X with value

Finally, the symbiogenetic model . . : .
€ D by (d,i) wherei is the index of the variable we
[Watson and Pollack, 2000, Watson and Pollack, 200 onsider. Using this notation, we represent the simultaseo

is one of th'e few mechanisms Wh'.Ch tries to address th<L:‘1's:~3signmentof variables , z, andz, with respective values
problem of incremental search. This approach suggests 10" = 4 o

consider incompletely defined solutions. The undefined"’ > 4
parts of the solutions are filled in with “don’t care” symbols ((v1,1), (v2,2), (v4,4))
In order to evaluate a solution, a fully defined solution is

obtained by aggregating the solutions with others untilla fu4 Transition Models

description of a solution is obtained. This way, solutions

evolve within a context defined by the other solutions ang}, s section, we will illustrate the key features of owrtr

solutions which solve nicely a part of the problem argiion model through a description of the simple example
more likely to be selected for the next generation. There {§ogcribed in Equation (1).

however a serious cost to this approach. In order to evaluate
a splution, several' contexts nee.d to be built, this yields 21 Preliminary Definitions
serious overhead in the evaluation process. Furthermore,
this approach still requires fully described solutionstfoe  We first introduce the reader with some definitions we will
evolutionary process to perform, among others, evaluatiarse throughout the model description:

and selection. Finally, Watson works with initial sound
population and considers this population in the context of
an ecosystem. As the evolutionary process goes on, new

either disappear at each generation or maintain themsel;:zﬁfﬁ

e A Partial Solutionis the assignment of a subset of the
variable set. An example of a partial solution is given

by (2).



e A Solutionis the particular case where assignments between the valuesand3. A possible conflict reso-
are defined for the entire variable set. lution for this example would be:

e A Genotypes the representation of the assignment (1,1),(3,2),(2,3) (5)
of variables. For example, (2) is the genotype of the
solution that assigns variables 1 and 2 with respective Conflicting values are equivalent to over-specified
values 1 and 3. representations in [Goldberg et al., 1989]. Our strat-
egy to solve this over-specification problem corre-

e A Symbiotic Partners another (partial) solution with sponds to the probabilistic strategy proposed there.

which a solution is linked. (An example is given by
3. (5) is called the (induced) phenotype of the partial sohutio
i o ) (2). This phenotype is used for evaluation and the result

* An (induced) phenotypef a solution is the variable of the evaluation is assigned to the genotype (2). We de-

assignments one obtalns_ When Workmg out _the SYMHote the phenotype of a solutierinteracting with a symbi-

biotic relation of the solution with |ts_, symb|_ot|c p_art— otic partnersp by: ¢(s, sp). The phenotype assigned to the

ner. The way such a phenotype is obtained is eXsympiotic partner is obtained the same way. Yet, the pol-

plained in the next section. If we denote bythe ey anout conflicting values may yield another representa-

solution and byspits symbiotic partner, we will de- tjon, than the one we obtained for the initial partial solntio

note the induced phenotype sflinked with spby  hig a5ymmetry between the phenotype of a solution and

(s, sp). the phenotype of its symbiotic partner increases the chance

_ _ for the exploration of the evolutionary process.
4.2 Basic Representation

Our model is a simple generational evolutionary algorithr4-3 Evaluation
that st.arts with a population of partially defined solu.tionsm the context of BINCSP, we will consider two types of
A partial solutions that only defines values for andz2 i gya1yation. The first type of evaluation considers the ayiali
for example: of the partially defined solution with respect to the entire
({1, 1), (3,2))- (2)  constraints set. This evaluation function correspondleo t
(2) is called the genotype of the solution. A solutiofiily ~ classical approach of fitness computation for CSP solving
qualifying in our example problem when assignments arEAS. That is the ratio of constraints from the constraints
defined for all six variables. set that are satisfied by the solution. The second type of
One of the basic requirements of incremental search is yaluation only considers the subset of constraints tieat ar
define how these partially defined solutions interact. Tis icovered by the partial solution.
explained using the following example. Let solutiomle- Let us denote byy,(p) the outcome of evaluating pheno-
fined by (2) interact with a symbiotic partnes defined by typep with constraint;, we say thap coversy, if p contains
((3,1), (2,3))%. We call this interacting partner the symbi-assignments for all variables containedcjn furthermore,
otic partner of (2) as a reference to the biological countep: satisfies, if the assignment values jndo not violate the

part of our model and denote the relation by: constraints defined by
((1,1),(3,2)) < ((3,1),(2,3)). 3) _ [ 1 pcoverscy Ap satisfies ci
c(p) 0 otherwise 6)

The underlying idea behind interaction is the sharing of in- ) ] . ] .
formation between the partners. The outcome of the infofeiven this, the classical evaluation of the solution ddxi
mation sharing between a solution and its symbiotic partn® (2) and denoted by working with a symbiotic partner
is called the phenotype of the solution. For example, th& IS given by:

way the phenotype of the solution with the symbiotic part-

1
ner described in (3) is obtained follows these steps: f(s) = @] Z ck(P(s, sp)) (7
keC
e The solution genotype is extended with the assign-
ments found in its symbiotic partner: whereC is the constraints sdi;’| the size of the constraints
set andy(s, sp) the induced phenotype afwhen sharing
1 ) . g o
<< 3 ) 1), (3,2), (2,3) (4) mfornjatl_on with its symb|ot|c partner. _
This fitness value is a measure of the quality of the par-

tially defined solution relatively to the entire set of con-
¢ Conflicting values are resolved by selecting randomlgtraints. It does however not give any indication of the qual
one of the possible choices. In our example, a conflidgty of the partially defined assignmemnedatively to the con-
needs to be resolved for varialite. We can choose straints it covers To see whether an association works fine
or not, we therefore define a restricted fitness measure that
LAt this time, we limit ourselves to pairwise interaction,wever, in- only considers the constraints covered by the phenotype of

teraction could also happen with more than one partner alhtevstudied the solution. If we denote bz}bv(s C) the set of constraints
in further work ’ ’




covered bys, the covering fithess measure is given by: First, we do not use the standard genetic algorithm op-
erator for recombination, i.e., crossover. Instead, weause
feon(8) = ! Z cx(@(s, sp))  simple replicator model where the individuals (in our case
lcov(@(s,5P)s ON | ¢ onotmem.C) partial-solutions) are only concerned with copying them-
’ (8) selves. This replication process is believed to be at the ori
We use the first measure (7) to guide the evolutionary pr@in of complexity in biological systems.
cess (selection). The second measure is used to decideSecond, we suppose that all partial solutions are collab-
whether a solution and its symbiotic partner should berating in order to find the solutions. This is inspired by a
merged into a more qualifying solution through the use of Riological claim that requires cooperation as a preretgiisi
transition for the emergence of complexity [Michod, 1999]. As we
Note thatf,., is related to the strategy adopted by Messyre interested in building complex solutions, we therefore
GA's for dealing with under-specification. However, in ourenforce cooperative units. This is a little different fronet
model, this covering fitness is not used to guide the evoldpiological world where all kinds of interactions are consid
tionary process. It is used as an observer that decides whesied and where the question of emergence of cooperation is

a new level of selection emerges. addressed. We are not concerned (at this time) with how co-
operation emerges between the solution units. We suppose
4.4 Reproduction and Transition that these units are already cooperating as we wish them to

) ] build complex entities. As indicated in Section 2, this &ssu

In our evolutionary process, solutions are selected aecorg|| pe investigated when the multi-level selection frame-
ing to their fitness described by (7). We consider a very,ork is combined with the Transition model.

simple evolutionary process that consists of replicatieg, Finally, the information sharing strategy we adopted al-
copying highly fit individuals, with a small probability of |65 information to be exchanged when values are conflict-
mutation. When a solution is selected, it will therefore bq:ng on certain allele (such as this was the case in example
replicated into a new solution. At the same time, the S€4) on variable 1). When fully grown genotypes are created,
lected solution can help its symbiotic partner to replicatgpis strategy corresponds to a simple uniform crossover op-
This replication of the symbiotic partneris currently rantl o ration as it is the case in GA's. However, this crossover op-
based, alternatively it could reflect a more problem specifigation is simulated as full grown solutions emerge. When
strategy. When the symbiotic partner is replicated as welhartia| solutions interact, the exchange can only happen on
Fhe symb!otlc link, that is, their mterac_tlon_ schgme will b conflicting parts of the genotype, yet, preserving the non
inherited in the process. The underlying idea is that (POgpnfiicting parts of the genotypes. We can therefore see that
sibly) good working units can survive over more than ongy Transition model is able to mimic uniform crossover but
generation. The idea of performing this replication in grou compines this with a preservation mechanism that prevents

is based on our previous work in the context of multi-levejne gestruction of good working parts of the solutions.
selection [Lenaerts et al., 2002, Lenaerts et al., 2003].

There is a special case where the result of the interacti -
will be used for replication rather than the genotype of ?Va“datlon

solution. This special case occurs when the phenotype hagse validation of this model has been performed against

pens to solve the sub-problem defined by the covering sgfee evolutionary techniques [van Hemert, 2002]:
of constraints. That is, whefi.,, is greater than a certain

threshold value. In this latter case, the transition create e Co-evolutionary Constraints Satisfaction (CCS)
new solution at a higher complexity level. Here we define ) ) ) o )

complexity as the number of assigned variables in the solu- ® (MI\/'l‘I:g))'genet'C algorithm with iterative descent
tion.

Let us _take the gxample soluti_on previously discu;sed. o Stepwise Adaptation of Weights (SAW)

The solution described by (2) with the phenotype given

in (5) has a classical fitness value @B3. The measure The results were described in [Defaweux et al., 2005] and
of the fitness restricted to the covering constraints set w#ise conclusion was that the model succeeds in evolving
1. In this case, if the solution is selected, the phenotypelly specified solutions by incrementally aggregating-par
and not the genotype will be replicated and passed on t@al units. Furthermore, comparing the Transition model
the offspring. This means that the expression of the offwith the three problem-specific evolutionary techniques
spring genotype will be:((1,1),(3,2),(2,3)) instead of above reveals that the Transition performs well againsithe
((1,1), (3,2)). This is the key of our incremental approachtechniques without the need to add problem-specific feature
Solutions are incrementally grown according to their suco it. Hence, this opens an interesting door toward the hy-

cess in solving the sub-problem they define. bridization of the Transition model with problem-specific
heuristics.
4.5 About transition models So far, no test was performed to check how sensitive

L the Transition model is with respect to its initial parame-
Although our model was adapted to an optimization fraMég setn | this paper, we discuss the robustness of the

work, it still shares important properties with the biolcgii 1, je| regarding the initial population setup. Other param-
Transition model on which it was based. eters such as mutation rate or eventually adaptation of the



aggregation mechanism will be considered in further stug-Density Tightness

ies. P 01 ] 03 ] 05 | 07 | 09
0.1 1.0 1.0 1.0 1.0 0.98
6 Experimentation (2.6) | (3.7) (6.5) | (14.8) | (3352.9)
0.3 1.0 1.0 1.0 0.21 -
6.1 Goal (3.5) | (12.8) | (61.1) | (7363) -

0.5 10 | 1.0 | 051 - -
4.9) | (32) | (14426)| - -

0.7 10 | 1.0 | 031 - -
| (7.5) | (89.8) | (8710) | - -

)

The way the initial population is generated influences th
outcome of an evolutionary algorithm. We compare twg
different setups for the initial population and see whether
influences the outcome of the evolutionary process as we

as its dynamics. We will consider the two following ini- 0.9 1.0 0.98 } - -
tial condition setups (which lie at the 2 extreme possibl (10.6) | (3961) - - -
setups):

Table 1: success ratio and Average Number of Evaluations
¢ A uniform random generated population of 100 parfor random generated population
tial solutions. The initial partial solutions represents
the assignments of only two distinct variable. As
such, they can expect to solve certain constraints ad @ndp are called “order parameters”, as they can be used
therefore receive a fitness greater than zero withol® order the problem instances of a class of problems. By
the need for collaboration. However, restricting thé€eping the number of variables and the domain size of
population to 100 partial solutions makes it impossiBaCh variable constant, and then varying these parameters

ble for all assignments to each variable to be preseM€¢ can induce a phase transition [Cheeseman et al., 1991].
in the population in the beginning. For low values of the parameters, all problem instances will

be solvable. When increasing them, at some point, unsolv-

e An initial soundpopulation of elementary solution gple problems appear, and at some higher values, all the
units. By elementary solution unit, we understand th@roblems become unsolvable. The conjecture is that the lo-
assignment of exactly one variable and by sound poRation of the phase transition, as given by parameter coordi
ulation we assume that all possible assignments fefates, coincides with the location of the hardest to solve (o

each variable are present. Since an elementary solgrproof unsolvable) problems. This gives rise to the typica
tion unit defines exactly one variable, it can not haveasy-hard-easy pattern.

a fitness greater than zero unless it collaborates with

at least one other e_zlementary unit. This follows fronb_z_l Simulation Parameters

the constraints, which are defined on exactly two vari- . .

ables. For a BINCSP of 15 variables each of domailVe varyp: andp; from 0.1 up to 0.9 with a step size of 0.2.
15, this result in an initial population of 225 solution For each combination ¢f; andp,, we generate 25 random

units. problem instances for a BINCSP of 15 variables each taking
values in a domain of size 15.
6.2 Experimental setup For each of the 25 problem instances generated per com-

bination ofpy,p2, we proceed with 10 runs, each run using a
We use randomly generated problem instances @ftferent seed, This yield a total of 250 runs for each param-
BINCSP. The RandomCSP package [van Hemert, 2004ter setup. The maximum amount of evaluations is set to
is used to generate the suite of test problem instancegp 0oo. We are interested in generating solvable instances
[van Hemert, 2002]. To scale the difficulty of the problemsg that we can compare the success ratio in both setups. As
instances, these CSP are generated according to tWQonsequence, we did not generate problem instances for
parameters. The first parameter is the density of thegh values ofy; andp. since solvable instances either do

BINCSP: lel not exist or cannot be found in a reasonable amount of time.
p1 = . We have tested this setup with the two types of initial
( 72‘ > populations described earlier.

This parameter reflects how many constraints there are r@g-2.2 Observations

atively to the maximum amount of constraints there can be. ] ) ) o ]
The second parameter is the average tightpesisat re- We are interested in observing following information:

flects the average complexity of the constraints. That is,

how many invalid simultaneous assignments of two vari-

ables are allowed in one constraint, averaged over all con-

straints. If we denote bj¢| the number of assignments in

the constraintg that satisfies;, and bym the domain size

of the variables in constraints we have:

e Solution sizes: We observe the maximum and min-
imum size of the solutions over time, together with
the size of the intersection of the solutions with their
symbiotic partner, i.e. the number of assignments
for the same variable present in both interacting solu-
tions. From this intersection, we distinguish conflict-

1 || ing values from others, that is, values for the same
Z ( ) variable which differ in both partial solutions.



Density Tightness Comparison Wilcoxon
o 01| 03 | 05 | 07 | 09 of Mann-Whitney
0.1 1.0 1.0 1.0 1.0 0.99 success-ratig rank-test
(4) (5) (7) (13) (3627) p1=0.3p2=0.9 0.3603 < 0.0001
03 1.0 1.0 1.0 0.28 N p1=0.5,p2=0.5 0.4735 0.2065
(5) (12) (43) (11758) - p1=0.5,ps = 0.7 0.4953 0.5887
05 1.0 1.0 0.54 - - p1 =0.7p2 =0.3 0.0609 0.07869
(6) (25) | (11409) - - p1=0.9,p=0.1 0.0926 < 0.0001

0.7 1.0 1.0 0.29 - -

©) | (61) | (9763) ) ) Table 3: Significance in the difference between results for

09 101 097 - - - initial setups for difficult problem_s: the first column gives
(11) | (2335) ) ) ) the p—va_lues for th_e _tgst of equivalence between the suc-
cess ratio of both initial setups, the second column gives
Table 2: success ratio and Average Number of Evaluatiotid® P-value for the Wilcoxon-Mann-Whitney rank test be-
for sound population tween both setups for the equivalence of the distribution of
the number of required evaluations to reach a solution.

e Fitnesses: We are interested in the fitness evolution o _
over time, the best achieved fitness, the average ffer very difficult problems £, = 0.5, p; = 0.5 p1 = 0.7,

ness of the population, the fitness of the biggest ind?2 = 0-55 p1 = 0.3, p2 = 0.7 pr = 0.1, p» = 0.9)
vidual. where we observe that the sound population performs as

well or slightly better than the random generated popula-
e Success ratio: This gives the ratio of successful rungon, we can see that the number of evaluations needed is
over the total amount of runs higher for the sound population. An explanation for this
. __may lie in the initial exploration process. The random gen-
e Average amount of Evaluations to reach a solutiong,,teq population already starts with pairs of solutiofs; i
this gives a measure of how fast our algorithm cafyq 4 nairs are present, they will be favored over the others
reach the goal (the solution). by the fitness proportionate selection. The sound populatio

This information can be split up in two categories. The firsfoWwever needs to build these basic pairs from scratch. lit wil
one helps us to observe the dynamics of the evolutionakjerefore favor a greater exploration in the very beginning
process (evolution of solutions sizes and fitnesses) and tAEtNe process. This yields slightly better results when-con

second category helps us to compare how well the two in?_idering the success ratio but this _exploration has a pdce a
tial populations perform (success ratio and average amodhgonverges more slowly to a solution.

of evaluation needed to reach the solution).
6.3.2 Significance of the initial population setup

6.3 Results Table 1 and Table 2 show little difference between the two
6.3.1 Comparing Success Ratio and Average Evaluation in_iFiaI setups. To assess whether these differences are sig
Steps nificant or not, we applied a two samples test to the re-
sult set obtained with each population setup for the difficul
In Table 1 and 2, we can observe the success ratio and fg@blem instances. The tests will eventually not allow us
average number of evaluation steps needed to reach a sqbireject the hypothesis that both process show an equiva-
tion for random generated population and sound populatiognt behavior. Since we could not suppose that our sample
respectively . In Table 2, we have underlined the success filows a normal distribution, we chose for the Wilcoxon-
tio of the sounded population whenever it performs betteyiann-Whitney test [Barlow, 1995].
than the uniform randomly generated population. We can The first column of Table 3 gives the p-value of a two
see that, in the overall, the initial population has littfeet  samples test for the comparison of the success ratio obitaine
on the chance of success, which is interesting as it indicat@ith each initial population setup. The second column pro-
that our algorithm performs well with a small initial popula vides us with the p-value of the Wilcoxon-Mann-Whitney
tion and hence does not need a big and complete populatifio sample rank test that checks whether the distribution
to achieve good results. of the number of evaluations to reach a solution between
For very easy problems, that is, problems where solioth initial population setups are equivalent. We can see
tions are found on average in less than 10 steps, the raRat for a significance level of 5%, the equivalence in the
domly generated population finds it a little faster. This isuccess ratio can not be rejected for any of the test case.
probably due to the fact that the initial partial solutiome a In other words, we cannot conclude that the initial popula-
already aggregated in pairs, speeding up the convergengsh setup yields significantly different chance of sucdass
toward the solutions. However, when the problem requirgsoth cases. Furthermore, the necessary computational time
a little more exploration, yet remaining easy, sound populgneasured in number of evaluations, to obtain a solution is
tions are faster as they can combine good units from scratgt significantly different either, when considering theyve

and need not to solve conflicts as the initial pairs in the ranifficult test cases (test-cases with a success kati@.7).
dom generated population are requested to do. However,
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However, there exists a significant difference when consid-
ering not too difficult instances (such as= 0.9, po = 0.3
andp; = 0.1,p. = 0.9). From these statistics, we may
suppose that the chance of success are not significantly dif
ferent from one population setup to another and that thé’
speed of the algorithm is probably not affected by thisahiti
setup when considering very difficult instances. To study
these similarities in more details, we will now examine the
dynamics of the search process on one of the difficult test .
cases. o 10
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6.3.3 Comparing Dynamics maximum size intersection -
minimum size ---------- conflicts

To compare the dynamics for both initial population setups,

we chose to illustrate it on an extremely difficult BINCSPFigure 3: Evolution of the genotype sizes for the sound pop-
(p1 = 0.7 andpy = 0.5). This difficult class of problems ulation

was chosen because it is where the greatest explorationis re

quired and therefore with high probability will show greate In Figure 3, we plot the evolution of the sizes for 40

differences between the two population setups. In Figure 1 ; . .
. . enerations. We observe that the maximum size converges
we can observe the evolution of the best fitness for both po%—

ulation setups. In Figure 2 we show the difference betwe uickly towards a value which is smaller than the size of a
PS. 9 eTuIIy defined solution (solution are fully defined when the

the random generated population and the sound populatlgg variables of the problem instance have been assigned).

f(_)r the averages of th_e maximum size, minimum size, th'Fhis convergence toward a partially defined solution illus-
size of the set of variables shared by both the partial s?-

lution and its symbiotic partner (we refer to this set as therates the difficulty for _the process to find ‘T‘SO'U“O” and_ the
intersection), and the size of the set of conflicting values inecessny for th_e _solut|on§ to cooperate with qthers tq f|nq a
this intersection. Figure 3 shows the evolution of thesessiz good compromising s_olut|on. What can be §a|d F:on5|der|ng

the evolution of the fitness on 1000 steps in Figure 1 and

for th n lation initial . . . : S . . .
orthe sou d popu a_t 0 t_a setup . the evolution of sizes in 40 steps in Figure 3 is that if the fit-
The fitness evolution confirms the fact that even if soun . : . : .
. . . . ness keeps increasing over time, the maximum size seems to
populations perform slightly better in general, the dynasmi . . .
converge relatively fast toward a maximum value. The size

of both process are very similar and both initial pquIat'Oa%raph only covers the 40 first steps and therefore cannot be
setups succeed in solving over 90% of the constraints on av-

erage. Figure 2 confirms the similarity in the evolutionar compared with the fitness graph. However, we can conclude
ge. rigure . muanty in ¥rom this that the increase in fitness we observe in Figure 1
dynamics and illustrates that this similarity is preseotr . S -
o . is the result of (re)combination through the symbiotic re-
the very beginning of the evolutionary process. We can ob-

serve that the sizes follow the same trends as the differeng(ta'on' Furthermore, on average, the sound population re-

remains low (as it never exceetls in absolute value). The (uests more time to achieve a solution, which illustrates th

X . : fa}ct that the sound population succeeds in maintaining suf-
difference between both population setups is therefore npt. . ) ; )
icient diversity among the population to allow exploration

significantly high and this confirms our hypothesis of ro
. -~ . to occur.
bustness of this model toward initial population setup.
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