
Stepwise Adaptation of Weights for Symbolic

Regression with Genetic Programming

J. Eggermont J.I. van Hemert
{jeggermo,jvhemert}@cs.leidenuniv.nl

Leiden University, P.O.Box 9512, 2300 RA, Leiden, The Netherlands

Abstract

In this paper we continue study on the Stepwise Adaptation of Weights
(saw) technique. Previous studies on constraint satisfaction and data clas-
sification have indicated that saw is a promising technique to boost the
performance of evolutionary algorithms. Here we use saw to boost per-
formance of a genetic programming algorithm on simple symbolic regression
problems. We measure the performance of a standard gp and two variants
of saw extensions on two different symbolic regression problems.

1 Introduction

In this study we test a technique called Stepwise Adaptation of Weights (saw)
on symbolic regression. We use a genetic programming algorithm and adapts its
fitness function using the saw technique in an attempt to improve both algorithm
performance and solution quality.

The saw technique is studied on many constraint satisfaction problems [3] and
on binary data classification [1]. It uses information of the problem from the run
so far to adapt the fitness function of an evolutionary algorithm.

In a regression problem we are looking for a function that closely matches an
unknown function based on a finite set of sample points. Genetic programming
(gp) as introduced by Koza [4] uses a tree structure to represent an executable
object or model. Here we will use gp to search for functions that solve a symbolic
regression problem.

The next section defines the symbolic regression problem and how this is solved
using genetic programming. In Section 3 we provide information on the saw
technique and show how this technique can be applied to symbolic regression. In
Section 4 we explain our experiments and we provide results. Finally we draw
conclusions and we provide ideas for further research.

1

2 Symbolic Regression with Genetic Programming

The object of solving a symbolic regression problem is finding a function that
closely matches some unknown function on a certain interval. More formally,
given an unknown function f(x) we want to find a function g(x) such that f(xi) =
g(xi) ∀xi ∈ X, where X is a set of values drawn from the interval we are interested
in. Note that we normally do not know f(x) precisely. We only know the set of
sample points {(x, f(x))|x ∈ X}. In this study we use predefined functions and
uniformly draw a set of 50 sample points from it to test our regression algorithms.

We use a genetic programming algorithm to generate candidate solutions, i.e.,
g(x). These functions are presented as binary trees build up using multiplication,
addition, subtraction, protected divide and the variable x. The genetic algorithm
will use standard crossover and mutation operators as defined by Koza [4]. Fur-
thermore its selection model is deterministic and generational. The parameters
and characteristics of the algorithm are in Table 1.

Table 1: Parameters and characteristics of the genetic programming algorithm

parameter value

evolutionary model (µ + λ) (µ + 7µ)
fitness standard gp see Equation 2
fitness saw variants see Equation 3
stop criterion maximum generations or perfect fit
functions set {*, %, -, +}
terminal set {x}
populations size see Table 2
maximum generations see Table 2
survivors selection keep best populations size individuals
parent selection random

The selection scheme in an evolutionary algorithm is one of its basic compon-
ents. It needs a way to compare the quality of two candidate solutions. This
measurement, the fitness function, is calculated using knowledge of the problem.
In symbolic regression we want to minimise the error ε as defined in Equation 1.

ε = |f(x)− g(x)| (1)

Thus the fitness function becomes:

standard fitness(g,X) =
∑
x∈X

|f(x)− g(x)| (2)

Other fitness functions can be used. For instance, bases on the mean square error.
We use this simple approach and make it adaptive in the next session.

3 Stepwise Adaptation of Weights

The Stepwise Adaptation of Weights (saw) technique was first studied on the
constraint satisfaction problem (csp). Solving a csp can mean different things.
Here the object is to find an instantiation of a set of variables such that none
of the constraints that restrict certain combinations of variable instantiations are
violated. This is a np-hard problem on which most evolutionary computation
approaches will fail because they get stuck in local optima. The saw technique is
designed to overcome this deficiency.

In data classification the problem is to find a model that can classify tuples
of attributes as good as possible. When we observe this problem with constraint
satisfaction in mind we can draw some analogies. For instance, in csp we have to
deal with constraints. Minimising the number of violated constraints is the object
and having no violated constraints at all yields a solution. Similarly, in data
classification, minimising the number of wrongly classified records is the object,
while correctly classifying all records yields a perfect model.

The idea of data classification can further be extended to symbolic regression.
Here we want to find a model, i.e., a function, that correctly predicts values of the
unknown function on the sampled points. The object is minimising the error of
prediction, having no error is a perfect fit.

This is where saw steps into the picture by influencing the fitness function of an
evolutionary algorithm. Note that in all the problems mentioned above the fitness
has to be minimised to reach the object. The idea behind saw is to adapt the
fitness function in an evolutionary algorithm by using knowledge of the problem
in the run so far.

The knowledge of the problem is represented in the form of weights. We add
a weight wi to every sample point xi ∈ X. These weights are initially set to one.
During the run of the genetic programming algorithm we periodically stop the main
evolutionary loop every five generations1 and adjust the weights. Afterwards we
continue the evolutionary loop using the new weights incorporated into the fitness
function as shown in Equation 3.

saw fitness(g,X) =
∑

xi∈X

wi|f(xi)− g(xi)| (3)

The adaptation of weights process takes the best individual from the current
population and determines the error it makes on each sample point. Each of the
weights wi corresponding to the error made on point xi is updated using the error
value |f(xi) − g(xi)|. We try two variants for altering weights. The first variant
classic saw (csaw) adds a constant value ∆w = 1 to each wi if the error on sample
point xi is not zero. This is based on the approach of violated constraints [3]. The
second variant precision saw (psaw) takes ∆w = |f(xi) − g(xi)| and adds ∆w
to the corresponding wi. We hope this variant is better in dealing with the real
valued domain of the error.

1This value is based on previous studies on saw

4 Experiments and Results

To test the performance of the two variants of saw we do a number of experiments
using three algorithms. First, the genetic programming algorithm without any
additional aids (gp). Second, the variant where we add saw with a constant
∆w (gp-csaw). Last, the variant where we add saw with ∆w = |f(x) − g(x)|
(gp-psaw).

We measure performance of the algorithms on two simple symbolic regression
problems. Each algorithm is tested with two different population sizes as shown in
Table 2. We use 99 independent runs for each setting in which we measure mean,
median, standard deviation, minimum and maximum standard fitness. Further-
more we count the number of successful runs. Where we define a run successful if
the algorithm finds a function that has a standard fitness below 10−6.

Table 2: Experiment parameters: six different experiments where each experiment
consists of 99 independent runs

experiment populations size number of generations

1 100 100
2 100 200
3 100 500
4 100 1000
5 500 100
6 500 200

4.1 Quintic polynomial

This quintic polynomial is taken from [5] and is defined by Equation 4. The
function is shown in Figure 1.

f(x) = x5 − 2x3 + x, x ∈ [−1, 1] (4)

Table 3 shows the results of the experiments on the quintic polynomial. Looking
at the mean and the median for all experiments we conjecture that gp-psaw
produces the best solutions. gp-csaw is not always better than gp, but it has the
best results when we observe the maximum error, i.e., the worst result found. The
best solution (1.704× 10−7) is found twice by gp-csaw.

We look at the individual runs of experiment 4 (population size of 100 and
1000 generations) and determine all the successful runs and see that gp has 76
successful runs out of 99, gp-csaw has 78 successful runs out of 99 and gp-psaw
has 85 successful runs of 99. These result are set out in Figure 3 together with their
uncertainty interval [7]. We use the usual rule of thumb where we need at least a
difference two and a half times the overlap of the uncertainty interval before we

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1 -0.5 0 0.5 1

f(
x)�

x

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100 1000 10000 100000 1e+06

S
ta

nd
ar

d
fit

ne
ss

 o
f b

es
t i

nd
iv

du
al

Evaluations

GP
GP+CSAW
GP+PSAW

Figure 1: The quintic polynomial on the interval [−1, 1] (left). Standard fitness
function over evaluations for one run of the three algorithms for the quintic poly-
nomial (right)

can claim a significant difference. This is clearly not the case here. In experiment
6 (population size 500 and 200 generations) gp fails 2 times out of 99. The other
two algorithms never fail.

4.2 Sextic polynomial

This sextic polynomial is taken from [5] and is defined in Equation 5. Figure 2
shows this function on the interval [−1, 1].

f(x) = x6 − 2x4 + x2, x ∈ [−1, 1] (5)

-1 -0.5 0 0.5 1

f(
x)�

x

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100 1000 10000 100000 1e+06

S
ta

nd
ar

d
fit

ne
ss

 o
f b

es
t i

nd
iv

du
al

Evaluations

GP
GP+CSAW
GP+PSAW

Figure 2: The sextic polynomial on the interval [−1, 1] (left). Standard fitness
function over evaluations for one run of the three algorithms for the sextic poly-
nomial (right)

Table 4 shows the results of the experiments on the sextic polynomial. gp-psaw
has the best median in one experiment and best mean in in three experiments.
gp-csaw never has the best mean but has the best median three times. If we are
only interested in the best solution over all runs we have an easier job comparing.

Table 3: Experiment results for the quintic polynomial (all measurements with
standard fitness function)

experiment median mean st. deviation minimum maximum

1. gp 4.610×10−7 1.351×10−1 2.679×10−1 2.640×10−7 1.050
gp-csaw 4.605×10−7 1.339×10−1 2.599×10−1 2.445×10−7 1.102
gp-psaw 4.391×10−7 1.286×10−1 2.972×10−1 2.598×10−7 1.559

2. gp 4.354×10−7 1.274×10−1 2.610×10−1 2.640×10−7 1.034
gp-csaw 4.303×10−7 1.226×10−1 2.376×10−1 2.445×10−7 8.525×10−1

gp-psaw 4.200×10−7 1.049×10−1 2.254×10−1 2.543×10−7 1.317
3. gp 3.972×10−7 1.120×10−1 2.571×10−1 2.640×10−7 1.034

gp-csaw 4.019×10−7 1.107×10−1 2.204×10−1 1.704×10−7 8.525×10−1

gp-psaw 3.855×10−7 7.785×10−2 2.049×10−1 2.449×10−7 1.111
4. gp 3.763×10−7 1.161×10−1 2.547×10−1 2.324×10−7 1.034

gp-csaw 3.693×10−7 8.323×10−2 1.803×10−1 1.704×10−7 6.969×10−1

gp-psaw 3.669×10−7 6.513×10−2 1.856×10−1 2.114×10−7 1.111
5. gp 3.465×10−7 2.045×10−3 1.544×10−2 1.965×10−7 1.433×10−1

gp-csaw 3.465×10−7 3.570×10−7 8.463×10−8 2.412×10−7 9.965×10−7

gp-psaw 3.395×10−7 3.382×10−7 4.384×10−8 1.974×10−7 5.071×10−7

6. gp 3.343×10−7 2.045×10−3 1.544×10−2 1.965×10−7 1.433×10−1

gp-csaw 3.446×10−7 3.512×10−7 8.337×10−8 2.412×10−7 9.965×10−7

gp-psaw 3.325×10−7 3.331×10−7 4.533×10−8 1.937×10−7 5.071×10−7

Table 4: Experiment results for the sextic polynomial (all measurements with
standard fitness function)

experiment median mean st. deviation minimum maximum

1. gp 2.182×10−7 1.490×10−1 3.987×10−1 1.723×10−7 2.844
gp-csaw 2.182×10−7 1.525×10−1 4.036×10−1 1.353×10−7 2.844
gp-psaw 2.182×10−7 1.212×10−1 2.569×10−1 1.213×10−7 1.720

2. gp 2.182×10−7 1.179×10−1 2.882×10−1 1.172×10−7 1.730
gp-csaw 2.098×10−7 1.244×10−1 3.626×10−1 1.244×10−7 2.491
gp-psaw 2.115×10−7 1.135×10−1 2.495×10−1 1.013×10−7 1.720

3. gp 1.953×10−7 8.001×10−2 2.318×10−1 1.171×10−7 1.730
gp-csaw 1.916×10−7 8.366×10−2 2.328×10−1 1.172×10−7 1.222
gp-psaw 1.984×10−7 8.403×10−2 2.226×10−1 1.013×10−7 1.720

4. gp 1.888×10−7 6.963×10−2 2.258×10−1 1.135×10−7 1.730
gp-csaw 1.824×10−7 6.100×10−2 1.741×10−1 1.048×10−7 1.161
gp-psaw 1.899×10−7 5.084×10−2 1.418×10−1 1.013×10−7 5.467×10−1

5. gp 1.385×10−7 1.507×10−7 3.280×10−8 1.087×10−7 2.912×10−7

gp-csaw 1.385×10−7 3.390×10−3 2.500×10−2 1.013×10−7 2.255×10−1

gp-psaw 1.385×10−7 2.485×10−3 2.460×10−2 1.125×10−7 2.460×10−1

6. gp 1.260×10−7 1.417×10−7 3.029×10−8 1.087×10−7 2.912×10−7

gp-csaw 1.363×10−7 3.390×10−3 2.500×10−2 1.013×10−7 2.255×10−1

gp-psaw 1.260×10−7 2.485×10−3 2.460×10−2 1.115×10−7 2.4560×10−1

The best solution (1.013× 10−7) is found in experiment 2 by gp-psaw in just 200
generations and by gp-csaw in experiment 5 within 100 generations.

Similar to the quintic polynomial we examine the individual runs of experiment
4 (population size of 100 and 1000 generations) and determine all the successful
runs. Here gp has 84 successful runs out of 99. gp-csaw has 81 successful runs
and gp-psaw has 87 successful runs. These result are set out in Figure 3 together
with there uncertainty interval [7]. Although differences seem larger than with the
quintic polynomial we still cannot claim a significant improvement. Tides turn
compared to the quintic polynomial as here gp-csaw fails twice, gp-psaw fails
once and gp always succeeds.

GP+PSAW

GP+CSAW

GP

60 65 70 75 80 85 90 95 100

Number of successful runs

GP+PSAW

GP+CSAW

GP

60 65 70 75 80 85 90 95 100

Number of successful runs

Figure 3: Number of successful runs with uncertainty intervals in experiment 4 for
the quintic polynomial (left) and the sextic polynomial (right)

5 Conclusions and Future Research

We have presented how the saw technique can be used to extend genetic program-
ming to boost performance in symbolic regression. We like to point out that the
simple concept behind saw makes it very easy to implement the technique in ex-
isting algorithms. Thereby, making it suitable for doing quick try outs to boost an
evolutionary algorithms performance. As saw solely focuses on the fitness func-
tion it can be used in virtually any evolutionary algorithm. However, it is up to
the user to find a good way of updating the weights mechanism depending on the
problem at hand. This paper shows two ways in which to add saw to a genetic
programming algorithm that solves symbolic regression problems. By doing this,
we add another problem area to a list of problems that already contains various
constraint satisfaction problems and data classification problems.

When we focus on a comparison of mean, median and minimum fitness it
appears that our new variant of the saw technique (precision saw) has the upper
hand. In most cases it finds a better or comparable result than our standard gp,
also beating the classic saw variant. Moreover, it seems that the saw technique
works better using smaller populations. Something that is already concluded by
Eiben et al. [2].

Although we show that in most cases our new variant psaw provides the best
solutions on average we are not able to get results that provide a significant im-
provement compared to standard gp. We note that this is a preliminary phase of
the study on symbolic regression using the saw technique and we hope to get more
conclusive results by increasing the number of independent runs and functions.

Looking at symbolic regression as used in this paper presents a problem that is
viewed as a static set of sample points. That is, the set of sample points is drawn
uniformly out of the interval of the unknown function and stays the same during
the run. Therefore, the problem is not finding an unknown function, but just a
function that matches the initial sample points. To circumvent this we could use a
co-evolutionary approach [6] that adapts the set of points we need to fit. Creating
an arms-race between a population of solutions and a population of sets of sample
points.

Acknowledgements

We thank Maarten Keijzer for sending us his gp kernel. This kernel is part of
the Data to Knowledge research project. More information on this project can be
found on http://project.dhi.dk/d2k.

References

[1] J. Eggermont, A.E. Eiben, and J.I. van Hemert. Adapting the fitness function
in GP for data mining. In R. Poli, P. Nordin, W.B. Langdon, and T.C. Fog-
arty, editors, Genetic Programming, Proceedings of EuroGP’99, volume 1598
of LNCS, pages 195–204, Goteborg, Sweden, 26–27 May 1999. Springer-Verlag.

[2] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring with
adaptive evolutionary algorithms. Journal of Heuristics, 4(1):25–46, 1998.

[3] A.E. Eiben and J.I. van Hemert. SAW-ing EAs: adapting the fitness function
for solving constrained problems, chapter 26, pages 389–402. McGraw-Hill,
London, 1999.

[4] J.R. Koza. Genetic Programming. MIT Press, 1992.

[5] J.R. Koza. Genetic Programming II: Autmoatic Discovery of Reusable Pro-
grams. MIT Press, Cambridge, MA, 1994.

[6] J. Paredis. Co-evolutionary computation. Artificial Life, 2(4):355–375, 1995.

[7] M.L. Wijvekate. Onderzoekmethoden. Het Spectrum, 1992.

